ВУЗ:
Составители:
Рубрика:
A L
2
(R
1
, dx)
A
f
(x) = (/π)
1/4
exp(−x
2
/2).
∀( > 0) : f
∈ Dom(A) , kf
k = 1 , kAf
k > const/ → ∞, → 0.
R(λ , A)f(x) =
1
(λ − x
2
)
f(x) , σ(A) = [0 , ∞).
A
f
n
(x) ⊕ Af
n
(x) ∈ Gr(A),
L
2
(R
1
, dx) ⊕ L
2
(R
1
, dx)
f
0
(x) ⊕ ψ(x)
A
L
2
(R
1
, dx)
f
n
(x) → f
0
(x) , x
2
f
n
(x) → x
2
f
0
(x) = ψ(x) , n → ∞.
L
2
(R
1
, dx)
f
0
(x) ∈ L
2
(R
1
, dx) , x
2
f
0
(x) ∈ L
2
(R
1
, dx),
f
0
(x) ∈ Dom(A) , ψ(x) = Af
0
(x) f
0
(x) ⊕ ψ(x) ∈ Gr(A).
A L
2
(R
1
, dx)
B = L
2
(R
1
, dx),
Dom(A) =
{f | f(x) ∈ L
2
(R
1
, dx) , f
0
(x) ∈ L
2
(R
1
, dx) , f
00
(x) ∈ L
2
(R
1
, dx)},
A : Dom(A) → L
2
(R
1
, dx) , Af(x) = −
d
2
dx
2
f(x).
Îáëàñòü îïðåäåëåíèÿ îïåðàòîðà A ïëîòíà â L2 (R1 , dx), òàê êàê îíà ñî-
äåðæèò âñå ôóíêöèè ñ êîìïàêòíûì íîñèòåëåì. Îïåðàòîð A íåîãðàíè÷åí.
Äåéñòâèòåëüíî, ïîëîæèì
f (x) = (/π)1/4 exp(−x2 /2).
Òîãäà
∀( > 0) : f ∈ Dom(A) , kf k = 1 , kAf k > const/ → ∞ , → 0.
Ëåãêî âèäåòü, ÷òî
1
R(λ , A)f (x) = f (x) , σ(A) = [0 , ∞).
(λ − x2 )
Îïåðàòîð A çàìêíóò. Äëÿ äîêàçàòåëüñòâà ýòîãî óòâåðæäåíèÿ ðàññìîò-
ðèì ïîñëåäîâàòåëüíîñòü
fn (x) ⊕ Afn (x) ∈ Gr(A),
êîòîðàÿ â òîïîëîãèè ïðÿìîé ñóììû L2 (R1 , dx) ⊕ L2 (R1 , dx) ñõîäèòñÿ
ê òî÷êå f0 (x) ⊕ ψ(x) è äîêàæåì, ÷òî ýòà òî÷êà ïðèíàäëåæèò ãðàôèêó
îïåðàòîðà A.
Èç îïðåäåëåíèÿ íîðìû â ïðÿìîé ñóììå ïðîñòðàíñòâ ñëåäóåò, ÷òî â
ìåòðèêå ïðîñòðàíñòâà L2 (R1 , dx)
fn (x) → f0 (x) , x2 fn (x) → x2 f0 (x) = ψ(x) , n → ∞.
Èç ïîëíîòû ïðîñòðàíñòâà L2 (R1 , dx) âûòåêàåò, ÷òî
f0 (x) ∈ L2 (R1 , dx) , x2 f0 (x) ∈ L2 (R1 , dx),
Ñëåäîâàòåëüíî,
f0 (x) ∈ Dom(A) , ψ(x) = Af0 (x) è f0 (x) ⊕ ψ(x) ∈ Gr(A).
Çàìåòèì, ÷òî â ðàññìîòðåííîì ïðèìåðå îáëàñòü îïðåäåëåíèÿ îïåðàòîðà
A íå çàìêíóòà â ïðîñòðàíñòâå L2 (R1 , dx).
Ðàññìîòðèì äðóãîé ïðèìåð. Ïîëîæèì
B = L2 (R1 , dx),
Dom(A) =
{f | f (x) ∈ L2 (R1 , dx) , f 0 (x) ∈ L2 (R1 , dx) , f 00 (x) ∈ L2 (R1 , dx)},
2 1 d2
A : Dom(A) → L (R , dx) , Af (x) = − 2 f (x).
dx
243
Страницы
- « первая
- ‹ предыдущая
- …
- 253
- 254
- 255
- 256
- 257
- …
- следующая ›
- последняя »
