ВУЗ:
Составители:
Рубрика:
z
0
(t , x)
[0 < t < δ]
U(t) : x 7→ z
0
(t , x).
U(t)
∀(t < δ) : kU(t)x | Bk ≤ (1 − α)
−1
δkbkM exp(ωδ)kx | Bk,
C([0 , δ] , B)
∀(x ∈ B) : kU(t)x − x | Bk → 0 , t → +0.
t1 + t2 < δ
z
0
(t1 + t2 , x) = T
0
(t2)(T
0
(t1)x +
Z
t1
0
T
0
(t1 −τ)bz
0
(τ , x)dτ)+
Z
t2
0
T
0
(t2 −τ)bz
0
(t1 + τ , x)dτ.
W x ∈ B
z(t1 + t2 , x) = z(t2 , z(t1 , x)),
∀(t1 + t2 < δ) , : U(t1)U(t2) = U(t1 + t2).
t = n
δ
2
+ τ , 0 ≤ τ <
δ
2
.
T (t) = U(
δ
2
)
n
U(τ).
C
0
A = A
0
+ b
B = L
2
(R
1
, dx)
Dom(A) = {f | f(x) ∈ L
2
(R
1
, dx) , x
2
f(x) ∈ L
2
(R
1
, dx)}
Af(x) = −x
2
f(x).
A
T (t)f(x) = exp(−x
2
t)f(x).
Ýòîò îïåðàòîð ñæèìàþùèé. Ïóñòü z0 (t , x) -åãî íåïîäâèæíàÿ òî÷êà. Äëÿ
[0 < t < δ] îïðåäåëèì îïåðàòîð
U (t) : x 7→ z0 (t , x).
Îïåðàòîð U (t) -ëèíåéíûé îãðàíè÷åííûé îïåðàòîð:
∀(t < δ) : kU (t)x | Bk ≤ (1 − α)−1 δkbkM exp(ωδ)kx | Bk,
ïðè÷åì èç îïðåäåëåíèÿ ïðîñòðàíñòâà C([0 , δ] , B) ñëåäóåò, ÷òî
∀(x ∈ B) : kU (t)x − x | Bk → 0 , t → +0.
Ïóñòü t1 + t2 < δ . Òîãäà
Z t1
z0 (t1 + t2 , x) = T0 (t2)(T0 (t1)x + T0 (t1 − τ )bz0 (τ , x)dτ )+
0
Z t2
T0 (t2 − τ )bz0 (t1 + τ , x)dτ.
0
Òàê êàê îïåðàòîð W ïðè êàæäîì x ∈ B èìååò åäèíñòâåííóþ íåïîäâèæ-
íóþ òî÷êó, òî îòñþäà ñëåäóåò ðàâåíñòâî
z(t1 + t2 , x) = z(t2 , z(t1 , x)),
ïîýòîìó
∀(t1 + t2 < δ) , : U (t1)U (t2) = U (t1 + t2).
Ïóñòü
δ δ
t=n +τ, 0≤τ < .
2 2
Ïîëîæèì
def δ
T (t) = U ( )n U (τ ). (3.269)
2
Ýòî ðàâåíñòâî îïðåäåëÿåò ïîëóãðóïïó êëàññà C0 ñ èíôèíèòåçèìàëüíûì
îïåðàòîðîì A = A0 + b.
Òåîðåìà äîêàçàíà.
Ðàññìîòðèì ïðèìåð. Â ïðîñòðàíñòâå B = L2 (R1 , dx) íà îáëàñòè
Dom(A) = {f | f (x) ∈ L2 (R1 , dx) , x2 f (x) ∈ L2 (R1 , dx)}
îïðåäåëèì îïåðàòîð
Af (x) = −x2 f (x).
Ëåãêî âèäåòü, ÷òî âñå óñëîâèÿ òåîðåìû Õèëëå-Ôèëëèïñà-Èîñèäû âûïîë-
íåíû è îïåðàòîð A ïîðîæäàåò ñæèìàþùóþ ïîëóãðóïïó
T (t)f (x) = exp(−x2 t)f (x).
256
Страницы
- « первая
- ‹ предыдущая
- …
- 266
- 267
- 268
- 269
- 270
- …
- следующая ›
- последняя »
