Лекции по функциональному анализу для начинающих специалистов по математической физике. Арсеньев А.А. - 268 стр.

UptoLike

Составители: 

Рубрика: 

z
0
(t , x)
[0 < t < δ]
U(t) : x 7→ z
0
(t , x).
U(t)
(t < δ) : kU(t)x | Bk (1 α)
1
δkbkM exp(ωδ)kx | Bk,
C([0 , δ] , B)
(x B) : kU(t)x x | Bk 0 , t +0.
t1 + t2 < δ
z
0
(t1 + t2 , x) = T
0
(t2)(T
0
(t1)x +
Z
t1
0
T
0
(t1 τ)bz
0
(τ , x))+
Z
t2
0
T
0
(t2 τ)bz
0
(t1 + τ , x).
W x B
z(t1 + t2 , x) = z(t2 , z(t1 , x)),
(t1 + t2 < δ) , : U(t1)U(t2) = U(t1 + t2).
t = n
δ
2
+ τ , 0 τ <
δ
2
.
T (t) = U(
δ
2
)
n
U(τ).
C
0
A = A
0
+ b
B = L
2
(R
1
, dx)
Dom(A) = {f | f(x) L
2
(R
1
, dx) , x
2
f(x) L
2
(R
1
, dx)}
Af(x) = x
2
f(x).
A
T (t)f(x) = exp(x
2
t)f(x).
Ýòîò îïåðàòîð ñæèìàþùèé. Ïóñòü z0 (t , x) -åãî íåïîäâèæíàÿ òî÷êà. Äëÿ
[0 < t < δ] îïðåäåëèì îïåðàòîð
                               U (t) : x 7→ z0 (t , x).
Îïåðàòîð U (t) -ëèíåéíûé îãðàíè÷åííûé îïåðàòîð:
          ∀(t < δ) : kU (t)x | Bk ≤ (1 − α)−1 δkbkM exp(ωδ)kx | Bk,
ïðè÷åì èç îïðåäåëåíèÿ ïðîñòðàíñòâà C([0 , δ] , B) ñëåäóåò, ÷òî
                   ∀(x ∈ B) : kU (t)x − x | Bk → 0 , t → +0.
Ïóñòü t1 + t2 < δ . Òîãäà
                                                Z   t1
        z0 (t1 + t2 , x) = T0 (t2)(T0 (t1)x +            T0 (t1 − τ )bz0 (τ , x)dτ )+
                                                0
        Z t2
              T0 (t2 − τ )bz0 (t1 + τ , x)dτ.
          0

Òàê êàê îïåðàòîð W ïðè êàæäîì x ∈ B èìååò åäèíñòâåííóþ íåïîäâèæ-
íóþ òî÷êó, òî îòñþäà ñëåäóåò ðàâåíñòâî
                         z(t1 + t2 , x) = z(t2 , z(t1 , x)),
ïîýòîìó
                   ∀(t1 + t2 < δ) , : U (t1)U (t2) = U (t1 + t2).
Ïóñòü
                                δ         δ
                             t=n +τ, 0≤τ < .
                                2         2
Ïîëîæèì
                               def  δ
                         T (t) = U ( )n U (τ ).               (3.269)
                                    2
Ýòî ðàâåíñòâî îïðåäåëÿåò ïîëóãðóïïó êëàññà C0 ñ èíôèíèòåçèìàëüíûì
îïåðàòîðîì A = A0 + b.
   Òåîðåìà äîêàçàíà.
   Ðàññìîòðèì ïðèìåð. Â ïðîñòðàíñòâå B = L2 (R1 , dx) íà îáëàñòè
          Dom(A) = {f | f (x) ∈ L2 (R1 , dx) , x2 f (x) ∈ L2 (R1 , dx)}
îïðåäåëèì îïåðàòîð
                                Af (x) = −x2 f (x).
Ëåãêî âèäåòü, ÷òî âñå óñëîâèÿ òåîðåìû Õèëëå-Ôèëëèïñà-Èîñèäû âûïîë-
íåíû è îïåðàòîð A ïîðîæäàåò ñæèìàþùóþ ïîëóãðóïïó
                           T (t)f (x) = exp(−x2 t)f (x).

                                        256