ВУЗ:
Составители:
Рубрика:
55
Здесь R
1
и R
2
– радиусы кривизны поверхностного слоя, величина
21
11
RR
+ - называется средней кривизной произвольной поверхности в
данной точке. Если поверхность сферическая, то R
1
=R
2
и
R
P
σ
2
=∆ , (7)
где R – радиус сферы. Добавочное давление ∆Р (иногда его называют
лапласовым давлением) обусловливает изменение уровня жидкости в
капиллярных трубках. Поэтому его еще называют капиллярным давлением.
Если жидкость полностью смачивает стенки капилляра, то поверхность ее
имеет вогнутую форму (∆Р<0), если полностью не смачивает – выпуклую
(∆P>0). Поэтому в случае смачивания капилляра уровень жидкости в нем
будет выше, чем с сосуде при не смачивании (рис. 6). Жидкость поднимается
или опускается в капилляре до тех пор, пока добавочное давление ∆Р не
сравняется с гидростатическим давлением поднявшегося или опустившегося
столба жидкости. Если считать, что жидкость полностью смачивает
поверхность капилляра, то радиус кривизны мениска R совпадает с
внутренним радиусом трубки r. По равенству лапласова и гидростатического
давления можно записать:
gh
r
P
ρ
σ
==∆
2
, (8)
где ρ - плотность жидкости, h – высота ее поднятия, g – ускорение силы
тяжести.
Из равенства (8) можно определить коэффициент поверхностного
натяжения:
2
ghr
ρ
σ =
. (9)
Формула (9) используется в качестве рабочей при определении
коэффициента поверхностного натяжения капиллярным методом.
ЗАДАЧА 1. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО
НАТЯЖЕНИЯ МЕТОДОМ ОТРЫВА КАПЕЛЬ
Приборы и принадлежности
Бюретка с краном на штативе, химический стакан, исследуемые
жидкости, аналитические весы, отчетный микроскоп.
PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
Здесь R1 и R2 – радиусы кривизны поверхностного слоя, величина 1 1 + - называется средней кривизной произвольной поверхности в R1 R2 данной точке. Если поверхность сферическая, то R1=R2 и 2σ ∆P = , (7) R где R – радиус сферы. Добавочное давление ∆Р (иногда его называют лапласовым давлением) обусловливает изменение уровня жидкости в капиллярных трубках. Поэтому его еще называют капиллярным давлением. Если жидкость полностью смачивает стенки капилляра, то поверхность ее имеет вогнутую форму (∆Р<0), если полностью не смачивает – выпуклую (∆P>0). Поэтому в случае смачивания капилляра уровень жидкости в нем будет выше, чем с сосуде при не смачивании (рис. 6). Жидкость поднимается или опускается в капилляре до тех пор, пока добавочное давление ∆Р не сравняется с гидростатическим давлением поднявшегося или опустившегося столба жидкости. Если считать, что жидкость полностью смачивает поверхность капилляра, то радиус кривизны мениска R совпадает с внутренним радиусом трубки r. По равенству лапласова и гидростатического давления можно записать: 2σ ∆P = = ρgh , (8) r где ρ - плотность жидкости, h – высота ее поднятия, g – ускорение силы тяжести. Из равенства (8) можно определить коэффициент поверхностного натяжения: rρgh σ = . (9) 2 Формула (9) используется в качестве рабочей при определении коэффициента поверхностного натяжения капиллярным методом. ЗАДАЧА 1. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ МЕТОДОМ ОТРЫВА КАПЕЛЬ Приборы и принадлежности Бюретка с краном на штативе, химический стакан, исследуемые жидкости, аналитические весы, отчетный микроскоп. 55 PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
Страницы
- « первая
- ‹ предыдущая
- …
- 53
- 54
- 55
- 56
- 57
- …
- следующая ›
- последняя »