Метрология, стандартизация и сертификация. Акмайкин Д.А. - 105 стр.

UptoLike

Составители: 

105
"!) #!)
R
!- (#) !-
" !  ,+!. (#) # =, "- (!$
#!)  ((& &!) #! ! )) $:
),sincos()2()(
00
1
0
ϕϕϕ
kbkaaf
kk
k
+==
=

2
0
a
# &# *#-!);
kk
ba ,
2,,!+! )
$ k- "!!; k ()  " #).0 "!-
!.
) $ "- (!$ - !
),cos()2()(
00
1
0
k
k
k
kccf
ϕϕϕ
++=
=

k
c
"(#! k "!!;
k
ϕ
&#$) ,*.
+!)
)(
ϕ
f
(#)) ($. #!&!
k
c
((-
 "(#!) !
k
ϕ
(( ,*).
#$1" !(#$*" ) !& " &!#" &#,
. . !"!&! (#!":
),cos()2()(
1
0 k
n
k
k
kccf
ϕϕϕ
++=
=
 n ()  "  1 "!! (#!".
# " $, # &# *#-!) '0"
#& )#)) !" *&!" ,+!!
)(
ϕ
f
* (! T
π
2
, (-
#)" " )!"  '* ) & 0 *"-
   #!!! "!&!/ #! (,!#) ( -
 +!#!):
.)()21(2
2
0
0
ϕϕπ
π
dfc
=
!" '*",
2
0
c
$ ()) #).0) #!)
0 *".   &# *#-!)
)cos(
11
ϕ
ϕ
+
c
- -
(! + 0!) 0
"!&!" +" &!) 0
(2+!! e), . . #! (#-!) (/!. 9$
1,1
ϕ
c
"(#! ! ,* 2+!!.
                "     ! )                  !) ∆R
                                             #     !                          -       ( #)                   ! -
 "               !                  ,   +!. ( #)                              # =, " - (                     ! $
  #            !)                   ( ( &       & !)                            #! !   ) )                 $ :
                                        00
          f (ϕ ) = (a0 2) =                  ( ak cos kϕ + bk sin kϕ ),
                                    k =1

      a0 2 −          #              &#               *# - !); a k , bk −                   2,,!+!             )
      $ k-            "    ! !; k – ( )                                   "                 #).0           "       !-
!.
           )          $ " -                  (             ! $        -           !
                                    00
          f (ϕ ) = (c0 2) +                  ck cos(kϕ + ϕ k ),
                                    k =1

      ck − "(#!                    k−            "     ! !; ϕ k −         & #$ ) , * .
                +!) f (ϕ )                  (        #)      )            (            $.    #!&!      ck ( ( -
      "(#!           ) ! ϕk ( (                      , *).
                #$        1 " ! ( #$* " )                                         !&        " &! # " &#             ,
. .       !       "       !& ! ( #! ":
                                        n
          f (ϕ ) = (c0 2) +                  ck cos(kϕ + ϕ k ),
                                    k =1

  n–( )                              "     1     " ! ! ( #! " .
      #                              "     $ , #    &#        *# - !)   '0 "
# & ) #)              )              !" * & ! " ,  +!! f (ϕ ) * ( ! T 2π , (-
      #) " "              ) ! "                      ' *                      )      &     0                   *" -
                      #! !!   "                      !&      !/       #            ! ( ,!#) (                     -
  +!#!           ):
                               2π
          c 0 2 = (1 2π ) f (ϕ )dϕ .
                               0

               !" ' * ", c 0 2                        $(          )       )             #).0 )         #        !)
      0          *"        .                     &#          *# - !) c1 cos(ϕ +ϕ 1)                    -            -
    (     ! +        0 !) 0′     " !& !" +                                                         "   & !) 0
(2 +      ! !  e), . .  #    !     ( # - !) (                                                  /       !. 9 $
  c1,ϕ1 − "(#!    !, * 2 +     ! !    .

                                                                                                                105