Метрология, стандартизация и сертификация. Акмайкин Д.А. - 22 стр.

UptoLike

Составители: 

22
"(#" ! ?
( )
3j
4(3)5
X(j3
Y(j3
(3jP(3W(j3
ϕ
==Θ+=
)
)
)))
,
 P(
ω
) !
θ
(
ω
) !#$) ! "!") &! !); X(j
ω
) !
Y(j
ω
) ('*! $ #) x(t) ! y(t), A(
ω
) ?,
ϕ
(
ω
) ?.
!" '*" ? ! ? (#) ( B "(#
,".
 2! ,+!! *!")* , ! !/ "- !  !* -
, (!",
( ) ( )
=
t
dttgth
0
;
( )
(
)
dt
tdh
tg =
;
( ) ( )
=
0
dtetgjjW
tj
ω
ωω
;
( ) ( )
=
0
2
1
ωω
π
ω
dejWtg
tj
! . .
*!!"! (" ,+!! W(j
ω
) " ' $ -
 " !* !( / !"!&!/ *$ ('#. 3.1).
'#!+ 3.1
!(  !"!&! *$)
 . 
W(p)

 ()
  p
  p/(p+1)
  /
  /p(p+1)
 () /(p+1)
!
/(
2
2
+2ξ+1)
"



ξ"

( )
(!", !*")) *" #!, !*").0) &'*-
 !* !
0
!
1
,  / !# !*")) ( * y
1
=y
0
+ S
0
(!
1
!
0
),
                                                                                        Y(j3)
                 "(#                    " !           ? W(j3) = P(3) + jΘ(3) =                = 4(3)5 jϕ (3 ) ,
                                                                                        X(j3)
     P(ω) ! θ(ω) −                            ! #$ ) ! " !" ) &                 !               !); X(jω) !
Y(jω) – ( ' *   !     $ #) x(t) ! y(t), A(ω) −   ?, ϕ(ω) −  ?.
    !" ' * "   ?!    ?(         #)      (      B      "(#
, ".
         2 ! , +!! * !" )* , ! !/" -              !      !* -
  , ( !" ,
                     t
          h(t ) = g (t )dt ;
                     0

                         dh(t )
          g (t ) =              ;
                          dt
                                    ∞
          W ( jω ) = jω g (t )e − jωt dt ;
                                    0

                            ∞
                      1
          g (t ) =        W ( jω )e jωt dω ! . .
                     2π 0
            * ! !" ! ( "       ,                                     +!! W(jω) "     '                  $       -
                 " !* !( / ! "!&                                     !/* $ ( '#. 3.1).

                                                                                                 '#!+ 3.1
                                        !(            ! "!&          ! *    $)
                                                                  .
                                                                 W(p)
                                (             )                                         –    "
                                                          p
                                                          p/( p+1)                      –
                                                          /
                                                          /p( p+1)                  ξ–      "
                             (                    )       /( p+1)
      !                                                   /(   2 2
                                                                     +2 ξ +1)       (                       )


          ( !" , !*" )) *"    #!, !*" ).0 ) & ' *-
     !* !0 !1,    /   ! #!*" ) )( *      y1=y0 + S0(!1 – !0),

22