Метрология, стандартизация и сертификация. Акмайкин Д.А. - 35 стр.

UptoLike

Составители: 

35
"-"  !# T
p
=
*
/v = 8 ÷10 #, & * D =
= 1/T
p
= 0,1÷0,125 
−1
.
'%,-" !" ) ,0%
#$! "-"  !# "$1.), #!'
. 2!/ #&)/ !*"! (1! 2(+!#$
(!. 5.2 ', ).
 "#!&!/ *
(
)
at
et
0
ωω
=
, 3
0
&
"#!&!/ *  "" !*#!) ; !
(+ "#!& !).
!# * * ") t (#)) ( ,"#
( )
( )
===
t
atat
t
e
a
dedtn
0
0
0
0
1)(
ω
τωττω
.
 !*"! (1! 
( )
( )
1)(
0
0*095,0
+=+=
at
e
a
tnt
ω
.
#) & ') *! & / (":
0
-
&#$ *&! (1!;
*
'#.  *( (1!;
ω
0
&#$) & "#!&!/ *; α ! (-
+ !).
  ! +,  +#$. (0!) !-
(#$*!) '/!" *#-!$ ) 2(+!#$. ,-
+!. ! *)$ ! ( / &# 2 *#-!). 
 v &#$) $ *!) (1!, %; α
-
! !*"!) (1!, %. #! α
= 0,  ! (0-
) #!. !*!&!, (" ((!"+!! * 10−15 # "--
 (#&!$ v ! α
.  !" ! ω
0
=v/
9
! α=α
/(
9
ω
0
).
(#! "" n− * ! "-" / !#:
0 0
1 1 1
ln( 1); ln(1 )
/
n
n n
a
t T
a n
a w w a
= + = +
+
" - "                 !          # Tp = ∆*/v = 8 ÷10 # , &                                               *      D =
                            −1
= 1/Tp = 0,1÷0,125    .
       ' %,      - "        ! " )                                               ,      0 %
            #$     !" - "       !                                          #           " $1 . ), #!'
       .    2 !/ # & )/ !*"   ! (                                          1         ! 2 (   +! #$
( ! . 5.2 ', ).
                  "        # !&          !/         *            ω (t ) = ω 0 e at ,           30 – &
"   # !&          !/    *                " "         !*                        # !)        ;       –             !
( +    "           # !&                        !).
     ! #            * *              ") t (          #)                )( , " #
              t              t
                                               ω0
       n(t ) = ω (τ )dτ = ω0 e at dτ =
                                               a
                                                     (e     at
                                                                 −1 .      )
              0              0

              !*"          ! (           1     !
                                                    ω0
       ∆ 0,95 (t ) = ∆ 0 + n(t )∆ * = ∆ 0 + ∆
                                                        a
                                                                 (e   at
                                                                           −1 . )
        #)        &              '       ) *    ! &                            / (     "               : ∆0 −        -
& #$     * & ! (                 1       !; ∆* – ' #.                                * (       (         1       !;
ω0 –    & #$ ) &                 "       # !&           !/                     * ;α−                     ! (         -
+           !).
                             !     +        ,     + #$. ( 0 !) ! -
( #$*   !)   '/             !"   *# -! $   ) 2 (      +! #$ . , -
+!. ! *) $ ! (               / &# 2      *# - !).


   v–      & #$ )                    $   *          !) (                       1      !, %; α∆ −                     -
 ! !*"        !) (          1        !, %. #! α∆ = 0,         ! (    0 -
  ) #!           .        !*!&       !, ( " ((     !" +!! * 10−15 # " --
  ( # &! $ v ! α∆.   !"     ! ω0=v/∆9 ! α=α∆/(∆9ω0).
      (    # ! " "       n−      * !" - "           /!                                                       # :
         1 a              1           1
    tn = ln( n + 1); Tn = ln(1 +            )
         a w0             a      w0 / a + n


                                                                                                                 35