Математическое моделирование и хаотические временные ряды. Безручко Б.П - 335 стр.

UptoLike

Рубрика: 

Библиографический список
313
239. Horbelt W., Timmer J. Asymptotic scaling laws for precision of parameter
estimates in dynamical systems // Phys. Lett. A. 2003. V. 310. P. 269-280.
240. Horbelt W., Timmer J., Bünner M.J., et al. Identifying physical properties of a
2
CO laser by dynamical modeling of measured time series // Phys. Rev. E. 2001.
V. 64. 016222.
241. Horbelt W., Timmer J., Voss H.U. Parameter estimation in nonlinear delayed
feedback systems from noisy data // Phys. Lett. A. 2002. V. 299. P. 513-521.
242. Huang N.E., Shen Z., Long S.R. The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R.
Soc. Lond. A. 1998. V. 454. P. 903-995.
243. Hubner U., Weiss C.-O., Abraham N.B., Tang D. Lorenz-like chaos in
FIRNH
3
lasers (data set A) // [326]. P. 73-104.
244. Ivanchenko M.V., Osipov G.V., Schalfeev V.D., Kurths J. Phase synchronization
in ensembles of bursting oscillators // Phys. Rev. Lett. 2004. V. 93. 134101.
245. Izhikevich E.M. Neural excitability, spiking and bursting // Int. J. Bif. Chaos.
2000. V. 10. P. 1171-1266.
246. Jaeger L., Kanrz H. Unbiased reconstruction of the dynamics underlying a noisy
chaotic time series // Chaos. 1996. V. 6. P. 440-450.
247. Janson N.B., Pavlov A.N., Anishchenko V.S. One method for restoring
inhomogeneous attractors // Int. J. Bif. Chaos. 1998. V. 8. P. 825-833.
248. Judd K. Chaotic time series reconstruction by the Bayesian paradigm: Right
results by wrong methods? // Phys. Rev. E. 2003. V. 67. 026212.
249. Judd K., Mees A.I. Embedding as a modeling problem // Physica D. 1998.
V. 120. P. 273-286.
250. Judd K., Mees A.I. On selecting models for nonlinear time series // Physica D.
1995. V. 82. P. 426-444.
251. Judd K., Small M. Towards long-term prediction // Physica D. 2000. V. 136.
P. 31-44.
252. Kadtke J., Kremliovsky M. Estimating statistics for detecting determinism using
global dynamical models // Phys. Lett. A. 1997. V. 229. P. 97-106.
253. Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time
series // Phys. Lett. A. 1995. V. 185. P. 77.
254. Kantz H., Schreiber T. Nonlinear time series analysis. Cambridge University
Press, Cambridge, 1997.
255. Kazantsev V.B., Nekorkin V.I., Binczak S., et al. Spiking dynamics of interacting
oscillatory neurons // Chaos. 2005. V. 15. 023103.
256. Keller C.F. Climate, modeling, and predictability // Physica D. 1999. V. 133.
P. 296-308.
257. Keller J.B. The probability of heads // American Mathematical Monthly. 1986.
V. 93, 3. P. 191-197.