Деформационный манометр. Бойко С.В - 9 стр.

UptoLike

Рубрика: 

9. Понятие НСП. Доверительная граница НСП
Доверительная граница несмещённой систематической погрешности
(НСП) результата измерений вычисляются по формуле
() ()
=
Θ=Θ
S
m
j
j
РКР
1
2
, (2)
где
коэффициент, определяемый принятой доверительной вероят-
ностью и числом (коэффициент Стьюдента по специальным таблицам),
()
РК
S
m количество составляющих НСП,
j
Θ найденная нестатическим методом граница и составляющей
НСП.
j
Если составляющие НСП разделены равномерно и заданы довери-
тельными границами
, то доверительные границы НСП результата из-
мерений вычисляются по формуле
j
Θ
()
[]
=
Θ=Θ
S
m
j
jjj
КРКР
1
22
, (3)
где
К
и коэффициенты, составляющие доверительные вероятности
j
К
P
и .
j
P
Результаты измерений тем ближе к истинному значению, чем мень-
ше оставшееся НСП.
10. Среднеквадратическое отклонение
Среднеквадратические отклонение (СКО) результата наблюдений
обозначаются
и вычисляются по формуле
()
xS
() ()
=
=
2
1
2
m
j
j
xSxS , (4)
где
значение СКО этих составляющих.
2
m
СКОхарактеризует случайность погрешностей.
Доверительную границу случайных погрешностей результата изме-
рений вычисляют по формуле
() ()
=
=
2
1
2
m
j
j
PGPG . (5)
Если случайные составляющие погрешности результата вычисляют
предварительно в рамках рабочих условий, то доверительную вероятность
вычисляют по формуле
9
   9.      Понятие НСП. Доверительная граница НСП
    Доверительная граница несмещённой систематической погрешности
(НСП) результата измерений вычисляются по формуле
                                                       mS

                         Θ( Р ) = К ( Р ) ⋅        ∑Θ  j =1
                                                                2
                                                                j   ,      (2)

где К (Р ) – коэффициент, определяемый принятой доверительной вероят-
ностью и числом (коэффициент Стьюдента по специальным таблицам),
      mS – количество составляющих НСП,
      Θ j – найденная нестатическим методом граница j и составляющей
НСП.
     Если составляющие НСП разделены равномерно и заданы довери-
тельными границами Θ j , то доверительные границы НСП результата из-
мерений вычисляются по формуле
                                        mS

                       Θ( Р ) = К ⋅    ∑ [Θ
                                        j =1
                                                       2
                                                       j        ]
                                                              Р j К 2j ,   (3)

где К и К j – коэффициенты, составляющие доверительные вероятности
P и Pj .
     Результаты измерений тем ближе к истинному значению, чем мень-
ше оставшееся НСП.


         10.     Среднеквадратическое отклонение
     Среднеквадратические отклонение (СКО) результата наблюдений
обозначаются S ( x ) и вычисляются по формуле
                                      m2

                          S (x ) =    ∑ S (x ) ,
                                      j =1
                                               2
                                               j                           (4)

где m2 – значение СКО этих составляющих.
     СКО – характеризует случайность погрешностей.
     Доверительную границу случайных погрешностей результата изме-
рений вычисляют по формуле
                                       m2

                          G (P ) =    ∑ G (P ) .
                                       j =1
                                                   2
                                                   j                       (5)

     Если случайные составляющие погрешности результата вычисляют
предварительно в рамках рабочих условий, то доверительную вероятность
вычисляют по формуле


                                                                            9