ВУЗ:
Составители:
Рубрика:
25
a
1r
= e
′
o
+ e
2n
⋅
x
2n
+ e
2r
⋅
x
2r
.
После подстановки, перемножений и замены коэффициентов
получается следующий полином для плана 3
2
:
y = b
′
o
⋅
x
o
+ b
1n
⋅
x
1n
+ b
2n
⋅
x
2n
+ b
1n,2n
⋅
x
1n
⋅
x
2n
+ b
1r
⋅
x
1r
+
+ b
2r
⋅
x
2r
+ b
1n,2r
⋅
x
1n
⋅
x
2r
+ b
2n,1r
⋅
x
2n
⋅
x
1r
+ b
1r,2r
⋅
x
1r
⋅
x
2r
(1)
В уравнении регрессии (1) y - показатель (параметр) процесса; x
o
=+1;
x
1n
=x
n
1
+ v
1
; x
1r
= x
r
1
+ a
1
⋅
x
n
1
+ c
1
;
x
2n
=x
n
2
+ v
2
; x
2r
= x
r
2
+ a
2
⋅
x
n
2
+ c
2
;
x
1
, x
2
-1, 2-й факторы (независимые переменные); n, r -изменяемые
числа показателей степени факторов; v
1
, a
1
, c
1
- коэффициенты
ортогонализации, определяемые при трех уровнях 1-го фактора, m = 1 по
формулам (2)-(4);
v
2
,a
2
, c
2
- коэффициенты ортогонализации, определяемые при трех
уровнях 2-го фактора, m=2 по формулам (2)-(4);
b
0
′
, b
1n
, b
2n
, b
1n,2n
, b
1r
, b
2r
, b
1n,2r
, b
2n,1r
, b
1r,2r
, - коэффициенты регресии.
Для уровней a, b, e факторы имеют следующие обозначения: x
1a
, x
1b
, x
1e
, x
2a
,
x
2b
, x
2e
.
Формулы для расчета коэффициентов ортогонолизации представлены
ниже:
V
m
=
n
m
x− (2)
()
2
2 n
m
n
m
rn
m
r
m
n
m
m
xx
xxx
a
−
−
=
+
; (3)
(
)
n
m
m
r
mm
xaxC +−=
(4)
где
()
n
me
n
mb
n
ma
n
m
xxxx ++=
3
1
;
()
r
me
r
mb
r
ma
r
m
xxxx ++=
3
1
;
()
n
me
n
mb
n
ma
n
m
xxxx
2222
3
1
++= ;
()
rn
me
rn
mb
rn
ma
rn
m
xxxx
++++
++=
3
1
;
()
membmam
xxxx ++=
3
1
;
В связи с ортогональным планированием все коэффициенты
регрессии и дисперсии в их определении рассчитываются независимо друг от
друга.
Формулы для расчета коэффициентов регресcии уравнения (1) имеют
следующий вид:
a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r . После подстановки, перемножений и замены коэффициентов получается следующий полином для плана 32: y = b′o ⋅ xo + b1n ⋅ x1n + b2n ⋅ x2n + b1n,2n ⋅ x1n ⋅ x2n + b1r ⋅ x1r + + b2r ⋅ x2r + b1n,2r ⋅ x1n ⋅ x2r + b2n,1r ⋅ x2n ⋅ x1r + b1r,2r ⋅ x1r ⋅ x2r (1) В уравнении регрессии (1) y - показатель (параметр) процесса; xo=+1; x1n =xn1 + v1 ; x1r = xr1 + a1⋅ xn1 + c1; x2n =xn2 + v2 ; x2r = xr2 + a2⋅ xn2 + c2; x1, x2 -1, 2-й факторы (независимые переменные); n, r -изменяемые числа показателей степени факторов; v1, a1, c1 - коэффициенты ортогонализации, определяемые при трех уровнях 1-го фактора, m = 1 по формулам (2)-(4); v2,a2, c2 - коэффициенты ортогонализации, определяемые при трех уровнях 2-го фактора, m=2 по формулам (2)-(4); b0′, b1n, b2n, b1n,2n, b1r, b2r, b1n,2r, b2n,1r, b1r,2r, - коэффициенты регресии. Для уровней a, b, e факторы имеют следующие обозначения: x1a, x1b, x1e, x2a, x2b, x2e. Формулы для расчета коэффициентов ортогонолизации представлены ниже: Vm = − x mn (2) x mn x mr − x mn + r am = ; (3) − (x ) 2 2n n x ( ) m m n C m = − x mr + a m x m (4) где 1 n x mn = (x ma + x mbn + x men ) ; x r = 1 (x r + x r + x r ); 3 m ma mb me 3 1 2n 1 n+r x m2 n = (x ma + x mb2 n + x me2 n ) ; x mn + r = (x ma + x mbn + r + x men + r ); 3 3 1 (x ma + x mb + x me ) ; xm = 3 В связи с ортогональным планированием все коэффициенты регрессии и дисперсии в их определении рассчитываются независимо друг от друга. Формулы для расчета коэффициентов регресcии уравнения (1) имеют следующий вид: 25
Страницы
- « первая
- ‹ предыдущая
- …
- 23
- 24
- 25
- 26
- 27
- …
- следующая ›
- последняя »