Математическое моделирование применительно к литейному производству. Черный А.А. - 19 стр.

UptoLike

Составители: 

Таблица 7
План проведения экспериментов 4 5
, u x
1,u
x
2,u
y
u
1 x
1,1
=x
1a
x
2,1
=x
2a
y
1
2 x
1,2
=x
1b
x
2,2
=x
2a
y
2
3 x
1,3
=x
1a
x
2,3
=x
2b
y
3
4 x
1,4
=x
1b
x
2,4
=x
2b
y
4
5 x
1,5
=x
1a
x
2,5
=x
2e
y
5
6 x
1,6
=x
1b
x
2,6
=x
2e
y
6
7 x
1,7
=x
1a
x
2,7
=x
2c
y
7
8 x
1,8
=x
1b
x
2,8
=x
2d
y
8
9 x
1,9
=x
1a
x
2,9
=x
2d
y
9
10 x
1,10
=x
1b
x
2,10
=x
2c
y
10
11 x
1,11
=x
1c
x
2,11
=x
2a
y
11
12 x
1,12
=x
1c
x
2,12
=x
2c
y
12
13 x
1,13
=x
1c
x
2,13
=x
2e
y
13
14 x
1,14
=x
1c
x
2,14
=x
2d
y
14
15 x
1,15
=x
1c
x
2,15
=x
2b
y
15
16 x
1,16
=x
1d
x
2,16
=x
2a
y
16
17 x
1,17
=x
1d
x
2,17
=x
2c
y
17
18 x
1,18
=x
1d
x
2,18
=x
2e
y
18
19 x
1,19
=x
1d
x
2,19
=x
2d
y
19
20 x
1,20
=x
1d
x
2,20
=x
2b
y
20
y = a
o
+ a
1n
x
1n
+ a
1r
x
1r
+ a
1s
x
1s
,
где a
o
= c
o
x
o
+ c
2n
x
2n
+ c
2r
x
2r
+ c
2s
x
2s
;
a
1n
= d
o
+ d
2n
x
2n
+ d
2r
x
2r
+ d
2s
x
2s ;
a
1r
= e
o
+ e
2n
x
2n
+ e
2r
x
2r
+ e
2s
x
2s
;
a
1s
= f
o
+ f
2n
x
2n
+ f
2r
x
2r
+ f
2s
x
2s ;
y = a
o
+ a
1n
x
1n
+ a
1r
x
1r
,
где a
o
= c
o
x
o
+ c
2n
x
2n
+ c
2r
x
2r
;
a
1n
= d
o
+ d
2n
x
2n
+ d
2r
x
2r ;
a
1r
= e
o
+ e
2n
x
2n
+ e
2r
x
2r
;
y = a
o
+ a
1n
x
1n
+ a
1r
x
1r
,
где a
o
= c
o
x
o
+ c
2n
x
2n
+ c
2r
x
2r
+ c
2s
x
2s
;
a
1n
= d
o
+ d
2n
x
2n
+ d
2r
x
2r
+ d
2s
x
2s ;
a
1r
= e
o
+ e
2n
x
2n
+ e
2r
x
2r
+ e
2s
x
2s
;
y = a
o
+ a
1n
x
1n
+ a
1r
x
1r
,
где a
o
= c
o
x
o
+ c
2n
x
2n
+ c
2r
x
2r
+ c
2s
x
2s
+ c
2w
x
2w
;
a
1n
= d
o
+ d
2n
x
2n
+ d
2r
x
2r
+ d
2s
x
2s
+ d
2w
x
2w
;
                                                                 Таблица 7

          План проведения экспериментов 4 ⋅ 5
№, u                x1,u             x2,u                                yu
 1                x1,1=x1a         x2,1=x2a                              y1
 2                x1,2=x1b         x2,2=x2a                              y2
 3                x1,3=x1a         x2,3=x2b                              y3
 4                x1,4=x1b         x2,4=x2b                              y4
 5                x1,5=x1a         x2,5=x2e                              y5
 6                x1,6=x1b         x2,6=x2e                              y6
 7                x1,7=x1a         x2,7=x2c                              y7
 8                x1,8=x1b         x2,8=x2d                              y8
 9                x1,9=x1a         x2,9=x2d                              y9
10               x1,10=x1b        x2,10=x2c                              y10
11               x1,11=x1c        x2,11=x2a                              y11
12               x1,12=x1c        x2,12=x2c                              y12
13               x1,13=x1c        x2,13=x2e                              y13
14               x1,14=x1c        x2,14=x2d                              y14
15               x1,15=x1c        x2,15=x2b                              y15
16               x1,16=x1d        x2,16=x2a                              y16
17               x1,17=x1d        x2,17=x2c                              y17
18               x1,18=x1d        x2,18=x2e                              y18
19               x1,19=x1d        x2,19=x2d                              y19
20               x1,20=x1d        x2,20=x2b                              y20


        y = a′o + a1n ⋅ x1n + a1r ⋅ x1r + a1s ⋅ x1s ,
  где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s ;
       a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s ;
       a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s ;
       a1s = f′o + f2n ⋅ x2n + f2r ⋅ x2r + f2s ⋅ x2s ;
  y = a′o + a1n ⋅ x1n + a1r ⋅ x1r ,
  где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r ;
       a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r ;
       a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r ;
  y = a′o + a1n ⋅ x1n + a1r ⋅ x1r ,
  где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s ;
       a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s ;
       a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s ;
  y = a′o + a1n ⋅ x1n + a1r ⋅ x1r ,
  где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s + c2w ⋅ x2w ;
      a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s + d2w ⋅ x2w ;