Математическое моделирование при двух уровнях факторов по программам на языках Бейсик и Турбо Паскаль. Черный А.А. - 10 стр.

UptoLike

Составители: 

10
Для планов 2
2
, 2
3
, 2
4
, 2
5
уравнения регрессии определяются исходя из
соответствующих зависимостей:
nn
xaay
11
'
0
+= ,
где
nn
xcxca
22000
+
=
,
nnn
xddа
2201
+
= ;
nn
xaay
11
'
0
+=
где
nn
xcca
2200
+
=
,
nnn
xddа
2201
+
=
,
nn
xfxfc
33000
+
=
,
nnn
xggс
3302
+
= ,
nn
xkkd
3300
+
=
,
nnn
xlld
3302
+
=
;
nn
xaay
11
'
0
+=
,
где
nn
xcca
2200
+
=
,
nnn
xddа
2201
+
=
,
nn
xfxfc
33000
+
=
,
nnn
xggс
3302
+
= ,
nn
xkkd
3300
+
=
,
nnn
xlld
3302
+
= ,
nn
xmmf
4400
+
=
,
nnn
xppf
4403
+
= ,
nn
xttg
4400
+
=
,
nnn
xvvg
4403
+
= ,
nn
xrrk
4400
+
=
,
nnn
xssk
4403
+
= ,
nn
xwwl
4400
+
=
,
nnn
xhhl
4403
+
= ;
nn
xaay
11
'
0
+= ,
где
nn
xcca
2200
+
=
,
nnn
xddа
2201
+
=
,
nn
xfxfc
33000
+
=
,
nnn
xggс
3302
+
= ,
nn
xkkd
3300
+
=
,
nnn
xlld
3302
+
= ,
nn
xmmf
4400
+
=
,
nnn
xppf
4403
+
= ,
nn
xttg
4400
+
=
,
nnn
xvvg
4403
+
= ,
nn
xrrk
4400
+
=
,
nnn
xssk
4403
+
= ,
nn
xwwl
4400
+
=
,
nnn
xhhl
4403
+
= ;
nn
xGGm
5500
+
=
,
nnn
xDDm
5504
+
= ,
nn
xHHp
5500
+
=
,
nnn
xLLp
5504
+
= ,
nn
xMMt
5500
+
=
,
nnn
xPPt
5504
+
= ,
nn
xQQv
5500
+
=
,
nnn
xRRv
5504
+
= ,
nn
xVVr
5500
+
=
,
nnn
xWWr
5504
+
= ,
nn
xTTs
5500
+
=
,
nnn
xEEs
5504
+
= ,
nn
xCCw
5500
+
=
,
nnn
xFFw
5504
+
= ,
nn
xKKh
5500
+
=
,
nnn
xNNh
5504
+
= .
После подстановки, перемножений и замены коэффициентов полу-
чаются следующие полиномы для плана 2
2
(табл. 3):
nnnnnnnn
xxbxbxbxby
212,1221100
+
+
+
= ;
для плана 2
3
(табл. 4):
        Для планов 22, 23, 24, 25 уравнения регрессии определяются исходя из
соответствующих зависимостей:
                                                y = a0' + a1n ⋅ x1n ,
где a0′ = c0′ ⋅ x0 + c2 n ⋅ x2 n , а1n = d 0′ + d 2 n ⋅ x2 n ;
                                                       y = a0' + a1n ⋅ x1n
где a0′ = c0′ + c2 n ⋅ x2 n ,      а1n = d 0′ + d 2 n ⋅ x2 n ,   c0′ = f 0′ ⋅ x0 + f 3n ⋅ x3n ,
      с2 n = g 0′ + g 3n ⋅ x3n ,    d 0′ = k 0′ + k 3n ⋅ x3n ,   d 2 n = l0′ + l3n ⋅ x3n ;
                                                      y = a0' + a1n ⋅ x1n ,
где a0′ = c0′ + c2 n ⋅ x2 n , а1n = d 0′ + d 2 n ⋅ x2 n ,
c0′ = f 0′ ⋅ x0 + f 3n ⋅ x3n , с2 n = g 0′ + g 3n ⋅ x3n ,
d 0′ = k 0′ + k3n ⋅ x3n , d 2 n = l0′ + l3n ⋅ x3n ,
 f 0′ = m0′ + m4 n ⋅ x4 n ,       f 3n = p0′ + p4 n ⋅ x4 n ,
g 0′ = t 0′ + t 4 n ⋅ x4 n ,  g 3n = v0′ + v4 n ⋅ x4 n ,
k 0′ = r0′ + r4 n ⋅ x4 n ,    k 3n = s0′ + s4 n ⋅ x4 n ,
l0′ = w0′ + w4 n ⋅ x4 n ,      l3n = h0′ + h4 n ⋅ x4 n ;
                                                      y = a0' + a1n ⋅ x1n ,
где a0′ = c0′ + c2 n ⋅ x2 n , а1n = d 0′ + d 2 n ⋅ x2 n ,
c0′ = f 0′ ⋅ x0 + f 3n ⋅ x3n , с2 n = g 0′ + g 3n ⋅ x3n ,
d 0′ = k 0′ + k3n ⋅ x3n , d 2 n = l0′ + l3n ⋅ x3n ,
 f 0′ = m0′ + m4 n ⋅ x4 n ,       f 3n = p0′ + p4 n ⋅ x4 n ,
g 0′ = t 0′ + t 4 n ⋅ x4 n ,  g 3n = v0′ + v4 n ⋅ x4 n ,
k 0′ = r0′ + r4 n ⋅ x4 n ,    k 3n = s0′ + s4 n ⋅ x4 n ,
l0′ = w0′ + w4 n ⋅ x4 n ,      l3n = h0′ + h4 n ⋅ x4 n ;
m0′ = G0′ + G5 n ⋅ x5 n ,        m4 n = D0′ + D5 n ⋅ x5 n ,
 p0′ = H 0′ + H 5 n ⋅ x5 n ,       p4 n = L0′ + L5 n ⋅ x5 n ,
t 0′ = M 0′ + M 5 n ⋅ x5 n ,      t 4 n = P0′ + P5 n ⋅ x5 n ,
v0′ = Q0′ + Q5 n ⋅ x5 n ,       v4 n = R0′ + R5 n ⋅ x5 n ,
r0′ = V0′ + V5 n ⋅ x5 n ,     r4 n = W0′ + W5 n ⋅ x5 n ,
s0′ = T0′ + T5 n ⋅ x5 n ,     s4 n = E0′ + E5 n ⋅ x5 n ,
w0′ = C0′ + C5 n ⋅ x5 n ,        w4 n = F0′ + F5 n ⋅ x5 n ,
h0′ = K 0′ + K 5 n ⋅ x5 n ,      h4 n = N 0′ + N 5 n ⋅ x5 n .
            После подстановки, перемножений и замены коэффициентов полу-
чаются следующие полиномы для плана 22 (табл. 3):
                                     y = b0′ ⋅ x0 + b1n ⋅ x1n + b2 n ⋅ x2 n + b1n , 2 n ⋅ x1n ⋅ x2 n ;
                       3
для плана 2 (табл. 4):




                                                                 10