ВУЗ:
Составители:
Рубрика:
54
составления и решения системы нормальных уравнений способом
наименьших квадратов для уравнения прямой:
01
у
па а х
Σ
=+Σ;
для уравнения гиперболы:
()
01
2
01
,
11 1
.
упа а
уа а
х
хх
=+ χ
⎧
⎪
⎨
⎪
=+
⎩
∑∑
∑∑∑
Затем рассчитываются парные коэффициенты корреляции по
формуле
ху
х
у
х
уху
r
−
⋅
=
δ
⋅δ
,
где
ху
ху
п
=
∑
;
х
x
п
=
∑
;
у
y
п
=
∑
;
()
2
2
;
X
х
х
п
δ= −
∑
()
2
2
Y
у
у
п
δ= −
∑
.
Для нахождения параметров уравнения и расчета коэффициен-
та корреляции надо построить вспомогательную таблицу по сле-
дующей схеме (табл. 4).
Таблица 4
Исходные и расчетные данные для нахождения параметров
уравнения и расчета коэффициента корреляции
Расчетные данные
№
хозяйств
Результативный признак
(розничный товарооборот)
y
Факторный
признак
x
2
y
2
x
x
y
1.
2.
и т.д.
3
5
328
400
n = 20
Суммы
Если рассчитывается уравнение гиперболы, то во вспомога-
тельную таблицу добавляются три колонки:
1
х
∑
;
1
у
х
∑
;
2
1
х
⎛⎞
⎜⎟
⎝⎠
∑
.
Коэффициент детерминации (
2
r ) – это квадрат коэффициента
корреляции, умноженный на 100. Например, если
r = 0,75, то
2
r = 0,5625, или 56 %.
составления и решения системы нормальных уравнений способом
наименьших квадратов для уравнения прямой:
Σу = па0 + а1Σх ;
для уравнения гиперболы:
⎧∑ у = па0 + а1 ∑ χ,
⎪
⎨
( )
2
⎪∑ у 1 = а0 ∑ 1 + а1 ∑ 1 .
⎩ х х х
Затем рассчитываются парные коэффициенты корреляции по
формуле
ху − х ⋅ у
rху = ,
δх ⋅ δ у
где ху = ∑ ; x = ∑ ; y = ∑ ;
ху х у
п п п
∑ х2 ∑ у2
− ( х ) ; δY = − ( у) .
2 2
δX =
п п
Для нахождения параметров уравнения и расчета коэффициен-
та корреляции надо построить вспомогательную таблицу по сле-
дующей схеме (табл. 4).
Таблица 4
Исходные и расчетные данные для нахождения параметров
уравнения и расчета коэффициента корреляции
№ Результативный признак Факторный Расчетные данные
хозяйств (розничный товарооборот) y признак x y2 x2 xy
1. 3 328
2. 5 400
и т.д.
n = 20
Суммы
Если рассчитывается уравнение гиперболы, то во вспомога-
тельную таблицу добавляются три колонки:
2
1 1 ⎛1⎞
∑ ; ∑ у ; ∑⎜ ⎟ .
х х ⎝ х⎠
Коэффициент детерминации ( r 2 ) – это квадрат коэффициента
корреляции, умноженный на 100. Например, если r = 0,75, то
r 2 = 0,5625, или 56 %.
54
Страницы
- « первая
- ‹ предыдущая
- …
- 52
- 53
- 54
- 55
- 56
- …
- следующая ›
- последняя »
