ВУЗ:
Рубрика:
6 §1. ðÒÏÉÚ×ÏÄÎÁÑ ÆÕÎËÃÉÉ
ðÒÉÍÅÒ 11. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ f (x) =
x
13
arcctg x
lg x
.
òÅÛÅÎÉÅ. æÕÎËÃÉÑ lg x ¡ ÜÔÏ ÄÅÓÑÔÉÞÎÙÊ ÌÏÇÁÒÉÆÍ, ÔÏ ÅÓÔØ lg x =
= log
10
x. ðÒÉÍÅÎÉÍ ÆÏÒÍÕÌÙ ÐÒÏÉÚ×ÏÄÎÙÈ ÞÁÓÔÎÏÇÏ É ÐÒÏÉÚ×ÅÄÅÎÉÑ:
x
13
arcctg x
lg x
0
=
x
13
arcctg x
0
· lg x −
x
13
arcctg x
· (lg x)
0
(lg x)
2
=
=
x
13
0
arcctg x + x
13
(arcctg x)
0
· lg x −
x
13
arcctg x
·
1
x ln 10
lg
2
x
=
=
13x
12
arcctg x + x
13
−
1
1+x
2
· lg x − x
13
arcctg x
1
x ln 10
lg
2
x
=
=
13x
12
arcctg x lg x −
x
13
lg x
1+x
2
−
x
12
arcctg x
ln 10
lg
2
x
.
1.4. ðÒÏÉÚ×ÏÄÎÁÑ ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ
ðÕÓÔØ ÆÕÎËÃÉÑ u = ϕ(x) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÎÅËÏÔÏÒÏÊ ÔÏÞËÅ x = x
0
,
Á ÆÕÎËÃÉÑ y = f(u) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÔÏÞËÅ u
0
= ϕ(x
0
). ôÏÇÄÁ, ÓÌÏÖÎÁÑ
ÆÕÎËÃÉÑ f (ϕ(x)) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÔÏÞËÅ x = x
0
, ËÏÔÏÒÁÑ ×ÙÞÉÓÌÑÅÔÓÑ
ÐÏ ÆÏÒÍÕÌÅ
[f(ϕ(x
0
))]
0
= f
0
(u
0
) · ϕ
0
(x
0
).
äÌÑ ËÒÁÔËÏÓÔÉ ÉÓÐÏÌØÚÕÅÔÓÑ ÓÌÅÄÕÀÝÁÑ ÚÁÐÉÓØ ÐÏÓÌÅÄÎÅÊ ÆÏÒÍÕÌÙ:
y
0
x
= y
0
u
· u
0
x
.
ðÒÉÍÅÒ 12. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ ln sin x.
òÅÛÅÎÉÅ. ïÂÏÚÎÁÞÉÍ y = ln u, u = sin x, ÔÏÇÄÁ y = ln sin x. ðÏ ÔÅÏÒÅÍÅ
Ï ÐÒÏÉÚ×ÏÄÎÏÊ ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ y
0
x
= y
0
u
· u
0
x
. îÁÈÏÄÉÍ:
y
0
u
= (ln u)
0
u
=
1
u
, u
0
x
= (sin x)
0
x
= cos x,
ÏÔËÕÄÁ
(ln sin x)
0
= y
0
x
= y
0
u
· u
0
x
=
1
u
· cos x =
1
sin x
· cos x = ctg x.
ðÒÉÍÅÒ 13. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y(x) = e
x
2
.
òÅÛÅÎÉÅ. ïÂÏÚÎÁÞÉÍ u = x
2
, ÔÏÇÄÁ y(u) = e
u
. ðÏ ÔÅÏÒÅÍÅ Ï ÐÒÏÉÚ×ÏÄÎÏÊ
ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ y
0
x
= y
0
u
· u
0
x
. îÁÈÏÄÉÍ:
y
0
u
= (e
u
)
0
u
= e
u
, u
0
x
=
x
2
0
x
= 2x,
6 §1. ðÒÏÉÚ×ÏÄÎÁÑ ÆÕÎËÃÉÉ 13 ðÒÉÍÅÒ 11. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ f (x) = x arcctg lg x x . òÅÛÅÎÉÅ. æÕÎËÃÉÑ lg x ¡ ÜÔÏ ÄÅÓÑÔÉÞÎÙÊ ÌÏÇÁÒÉÆÍ, ÔÏ ÅÓÔØ lg x = = log10 x. ðÒÉÍÅÎÉÍ ÆÏÒÍÕÌÙ ÐÒÏÉÚ×ÏÄÎÙÈ ÞÁÓÔÎÏÇÏ É ÐÒÏÉÚ×ÅÄÅÎÉÑ: 0 · (lg x)0 13 0 13 13 x arcctg x x arcctg x · lg x − x arcctg x = = lg x (lg x)2 13 0 0 arcctg x + x (arcctg x) · lg x − x13 arcctg x · x ln1 10 13 x = = lg2 x 1 13x12 arcctg x + x13 − 1+x · lg x − x13 arcctg x x ln1 10 2 = = lg2 x x13 lg x x12 arcctg x 13x12 arcctg x lg x − 1+x2 − ln 10 = . lg2 x 1.4. ðÒÏÉÚ×ÏÄÎÁÑ ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ ðÕÓÔØ ÆÕÎËÃÉÑ u = ϕ(x) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÎÅËÏÔÏÒÏÊ ÔÏÞËÅ x = x 0, Á ÆÕÎËÃÉÑ y = f (u) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÔÏÞËÅ u0 = ϕ(x0). ôÏÇÄÁ, ÓÌÏÖÎÁÑ ÆÕÎËÃÉÑ f (ϕ(x)) ÉÍÅÅÔ ÐÒÏÉÚ×ÏÄÎÕÀ × ÔÏÞËÅ x = x0, ËÏÔÏÒÁÑ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ [f (ϕ(x0))]0 = f 0 (u0) · ϕ0 (x0). äÌÑ ËÒÁÔËÏÓÔÉ ÉÓÐÏÌØÚÕÅÔÓÑ ÓÌÅÄÕÀÝÁÑ ÚÁÐÉÓØ ÐÏÓÌÅÄÎÅÊ ÆÏÒÍÕÌÙ: yx0 = yu0 · u0x . ðÒÉÍÅÒ 12. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ ln sin x. òÅÛÅÎÉÅ. ïÂÏÚÎÁÞÉÍ y = ln u, u = sin x, ÔÏÇÄÁ y = ln sin x. ðÏ ÔÅÏÒÅÍÅ Ï ÐÒÏÉÚ×ÏÄÎÏÊ ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ yx0 = yu0 · u0x . îÁÈÏÄÉÍ: 1 yu0 = (ln u)0u = , u0x = (sin x)0x = cos x, u ÏÔËÕÄÁ 1 1 (ln sin x)0 = yx0 = yu0 · u0x = · cos x = · cos x = ctg x. u sin x 2 ðÒÉÍÅÒ 13. îÁÊÔÉ ÐÒÏÉÚ×ÏÄÎÕÀ ÆÕÎËÃÉÉ y(x) = ex . òÅÛÅÎÉÅ. ïÂÏÚÎÁÞÉÍ u = x2 , ÔÏÇÄÁ y(u) = eu . ðÏ ÔÅÏÒÅÍÅ Ï ÐÒÏÉÚ×ÏÄÎÏÊ ÓÌÏÖÎÏÊ ÆÕÎËÃÉÉ yx0 = yu0 · u0x . îÁÈÏÄÉÍ: 0 yu0 = (eu)0u = eu , u0x = x2 x = 2x,
Страницы
- « первая
- ‹ предыдущая
- …
- 4
- 5
- 6
- 7
- 8
- …
- следующая ›
- последняя »