Элементы теории категорий. Ершов А.В. - 10 стр.

UptoLike

Составители: 

Рубрика: 

C Ob(C) = {x | x
X}, Hom
C
(x, x
0
) = {g G | gx = x
0
}. C
X (g, x), g G, x X,
(g, x) Hom
C
(x, gx). (g, x) (g
0
, x
0
)
gx = x
0
, (g
0
, x
0
)
(g, x) := (g
0
g, x) Hom
C
(x, g
0
x
0
) x
g
x
0
g
0
x
00
id
x
(e, x).
(g, x) g
1
(gx) =
(g
1
g)x = ex = x, g(g
1
(gx)) = (gg
1
)(gx) = e(gx) = gx.
Rel
Rel
Hom
Rel
(X, Y ) X ×
Y.
S X × X R X
S X × X R
S
xR
S
y (x, y)
S
ϕ: X Y ψ : Y Z
ψ ϕ = {(x, z) X × Z | y Y (x, y) ϕ, (y, z) ψ}.
id
X
id
X
=
{(x, x) | x X} X × X.
C
C (A, B, ϕ), A, B ϕ: A B
(A, B, ϕ) (A
0
, B
0
ϕ
0
)
(α, β) α: A A
0
, β : B B
0
A
ϕ
//
α
B
β
A
0
ϕ
0
//
B
0
ϕ
0
α = β ϕ: A B
0
. (α
0
, β
0
)
Hom
C
((A
0
, B
0
, ϕ
0
), (A
00
, B
00
, ϕ
00
)), (α
0
, β
0
) (α, β)
(α
0
α, β
0
β) Hom
C
((A, B, ϕ), (A
00
, B
00
, ϕ
00
)).
Matr(K) K
Matr(K) 1, 2, 3, . . . ,
m n n × m K
m
B
n n
A
p