Арифметические и логические основы компьютера. Фатеева Н.М - 33 стр.

UptoLike

33
Шестнадцатеричная позиционная система счисления
В шестнадцатеричной системе счисления (Р = 16) для записи
всевозможных чисел используются шестнадцать различных символов:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Шестнадцатеричные таблицы
сложения и умножения составьте самостоятельно.
Представление чисел в формате
с фиксированной и плавающей запятой
Целые числа в компьютере хранятся в памяти в формате с фик-
сированной запятой. В тех ЭВМ, в работе с которыми пользуются
числами с фиксированной запятой, применяется естественная форма
записи чисел, т. е. с постоянным количеством разрядов для целой и
дробной части числа, следовательно, фиксация запятой одинакова для
всех чисел.
Сложение и вычитание чисел с фиксированной точкой произво-
дятся по правилам обычного двоичного сложения и вычитания, так
как результат операции не влияет на положение точки. Однако при
выполнении умножения и деления необходимо осуществлять коррек-
цию положения точки.
Наличие дополнительных вычислений при представлении дроб-
ных чисел в формате с фиксированной точкой затрудняет расчеты на
ЭВМ.
Недостатки формата с фиксированной точкой слежение за по-
ложением точки и сравнительно небольшой диапазон представляемых
чисел устраняются представлением чисел в формате с плавающей
точкой. В этом формате разряды числа разбиваются на два поля,
имеющих названия мантисса и порядок. Если обозначить мантиссу
буквой М, а порядок букв Р, то величина числа X = ±М ±Р. Эта за-
пись является эквивалентом формы записи десятичных чи-
сел X = М * 10
Р
, где М – множитель, содержащий все цифры числа
(мантисса), а Р целое число (порядок). Например: 200 = 2*10
2
,
36000000000 = 36*10
9
.
Для выделения положительных и отрицательных чисел в ЭВМ
используется знаковый разряд, причем знак «+» обозначается цифрой
0, а знак «–» – цифрой 1.
Структура 16-разрядного числа в представлении с плавающей
точкой и примеры даны в таблице 8.
        Шестнадцатеричная позиционная система счисления

     В шестнадцатеричной системе счисления (Р = 16) для записи
всевозможных чисел используются шестнадцать различных символов:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Шестнадцатеричные таблицы
сложения и умножения составьте самостоятельно.

                  Представление чисел в формате
               с фиксированной и плавающей запятой

      Целые числа в компьютере хранятся в памяти в формате с фик-
сированной запятой. В тех ЭВМ, в работе с которыми пользуются
числами с фиксированной запятой, применяется естественная форма
записи чисел, т. е. с постоянным количеством разрядов для целой и
дробной части числа, следовательно, фиксация запятой одинакова для
всех чисел.
      Сложение и вычитание чисел с фиксированной точкой произво-
дятся по правилам обычного двоичного сложения и вычитания, так
как результат операции не влияет на положение точки. Однако при
выполнении умножения и деления необходимо осуществлять коррек-
цию положения точки.
      Наличие дополнительных вычислений при представлении дроб-
ных чисел в формате с фиксированной точкой затрудняет расчеты на
ЭВМ.
      Недостатки формата с фиксированной точкой – слежение за по-
ложением точки и сравнительно небольшой диапазон представляемых
чисел устраняются представлением чисел в формате с плавающей
точкой. В этом формате разряды числа разбиваются на два поля,
имеющих названия мантисса и порядок. Если обозначить мантиссу
буквой М, а порядок букв – Р, то величина числа X = ±М ±Р. Эта за-
пись является эквивалентом формы записи десятичных чи-
сел X = М * 10Р, где М – множитель, содержащий все цифры числа
(мантисса), а Р – целое число (порядок). Например: 200 = 2*102,
36000000000 = 36*109.
      Для выделения положительных и отрицательных чисел в ЭВМ
используется знаковый разряд, причем знак «+» обозначается цифрой
0, а знак «–» – цифрой 1.
      Структура 16-разрядного числа в представлении с плавающей
точкой и примеры даны в таблице 8.


                                   33