ВУЗ:
Составители:
88-H2 + 0.624 Cos@tDLHy@tD+ z@tDL+ x
£
@tD == 0,
H1 - 0.6656 Sin@x@tDD
2
LHx@tD+ z@tDL+ y
£
@tD == 0,
H1 + 0.504 tLx@tD- H1 + 0.714 t
2
Ly@tD
2
+ z
£
@tD == 0,
x@0D == 1.014, y@0D == 1.8, z@0D == -1.642<, 8t, 0, 4.33<,
MaxSteps Ø 19000, AccuracyGoal ض, PrecisionGoal Ø 16,
WorkingPrecision Ø 16, Method Ø RungeKutta<
4. Найти численное решение (с повышенной точностью) следующих
начальных задач для нелинейных систем из двух уравнений первого
порядка (1§j§5). Построить графики решений в фазовой плоскости и
объединённый график. Провести проверку первой из предложенных задач.
99x
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
CosA
x@tD
ÅÅÅÅÅÅÅÅÅÅÅÅ
7
E
2
RoundA100
i
k
j
j
j
1 +
0.7 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H2 + jL
2
y
{
z
z
z
E-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.75 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H3 + jL
2
y
{
z
z
z
Ex@tD-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
10 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H2 + jL
2
y
{
z
z
z
Ey@tD
2
,
y
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
Cos@9tD
3
RoundA100
i
k
j
j
j
1 +
0.85 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H5 + jL
2
y
{
z
z
z
E-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.8 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H4 + jL
2
y
{
z
z
z
Ey@tD,
x@0D == -0.2 + 0.0013 j RoundA100
i
k
j
j
j
1 +
10 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + 2jL
2
y
{
z
z
z
E,
y@0D == 1.07 - 0.0012 j RoundA100
i
k
j
j
j
1 +
5j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
E=,
8x, y<, 8t, -0.67 + 0.07 j, 1.23 - 0.08 j<,
MaxSteps Ø 1000 H17 + jL,
AccuracyGoal ض, PrecisionGoal Ø 14 + j,
WorkingPrecision Ø 16, Method Ø RungeKutta,
PlotStyle Ø 8Thickness@0.002 + 0.0008 jD, Hue@0.9 - 0.18 jD<,
PlotPoints Ø 100 + 10 j=
5. Найти численное решение граничной задачи для уравнения второго
порядка с комплекснозначными данными. Построить объединённый график
z
ad ok7bis.nb 82
zad ok7bis.nb 82
88-H2 + 0.624 Cos@tDL Hy@tD + z@tDL + x£ @tD == 0,
H1 - 0.6656 Sin@x@tDD2 L Hx@tD + z@tDL + y£ @tD == 0,
H1 + 0.504 tL x@tD - H1 + 0.714 t2 L y@tD2 + z£ @tD == 0,
x@0D == 1.014, y@0D == 1.8, z@0D == -1.642<, 8t, 0, 4.33<,
MaxSteps Ø 19000, AccuracyGoal Ø ¶, PrecisionGoal Ø 16,
WorkingPrecision Ø 16, Method Ø RungeKutta<
4. Найти численное решение (с повышенной точностью) следующих
начальных задач для нелинейных систем из двух уравнений первого
порядка (1§j§5). Построить графики решений в фазовой плоскости и
объединённый график. Провести проверку первой из предложенных задач.
i 0.7 j y
99x @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ CosA ÅÅÅÅÅÅÅÅÅÅÅÅ E RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE - ÅÅÅÅÅÅÅÅÅÅÅÅ
x@tD 2
k H2 + jL {
£ 1 1
100 7 100
i 0.75 j y i 10 j y
RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE x@tD - ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD2 ,
k H3 + jL { k H2 + jL {
1
100
i 0.85 j y
y£ @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ Cos@9 tD3 RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE -
k H5 + jL {
1
100
i 0.8 j y
ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD,
k H4 + jL {
1
100
i 10 j y
x@0D == -0.2 + 0.0013 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE,
k H1 + 2 jL {
i 5j y
y@0D == 1.07 - 0.0012 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE=,
k H1 + jL {
8x, y<, 8t, -0.67 + 0.07 j, 1.23 - 0.08 j<,
MaxSteps Ø 1000 H17 + jL,
AccuracyGoal Ø ¶, PrecisionGoal Ø 14 + j,
PlotStyle Ø [email protected] + 0.0008 jD, [email protected] - 0.18 jD<,
WorkingPrecision Ø 16, Method Ø RungeKutta,
PlotPoints Ø 100 + 10 j=
5. Найти численное решение граничной задачи для уравнения второго
порядка с комплекснозначными данными. Построить объединённый график
Страницы
- « первая
- ‹ предыдущая
- …
- 80
- 81
- 82
- 83
- 84
- …
- следующая ›
- последняя »
