Электричество и магнетизм. Учебно-методическое пособие. Громов Ю.Ю - 7 стр.

UptoLike

Рубрика: 

Найдем напряженность электростатического поля, созданного положительным зарядом q , равно-
мерно распределенным на поверхности сферы радиуса R .
Мысленно разобьем сферу на части так, чтобы каждая часть имела одинаковый заряд. Разбиение
проводим так, чтобы каждая часть имела один и тот же заряд. Любые два диаметрально противополож-
ных заряда создают в центре сферы равные по модулю и противоположные по направлению напряжен-
ности. Поэтому напряженность электрического поля в центре сферы равна нулю. Другими словами,
внутри заряженной сферы электростатическое поле отсутствует. Проведем из центра сферы луч OA.
Любые два заряда симметричные относительно отрезка OA создают напряженность вдоль оси отрезка
ОА (рис. 1.7.1). Луч ОА направлен вдоль радиуса сферы. Поэтому вектор напряженности электростати-
ческого поля положительно заряженной сферы направлен воль радиуса от центра сферы. Если сфера
заряжена отрицательно, то вектор напряженности направлен по радиусу к центру сферы. Если нас инте-
ресует напряженность поля сферы на больших расстояниях от сферы, то сферу можно рассматривать
как точечный заряд. Тогда напряженность электростатического поля заряженной сферы вне сферы рав-
на
2
0
4
1
r
q
E
επε
=
, где R
r
>> . (1.7.1)
Напряженность поля вне равномерно заряженной сферы совпадает с напряженностью поля точеч-
ного заряда, равного заряду сферы и помещенного в ее центре.
1.7 Электрическое поле заряженной плоскости
Рассмотрим электрическое поле бесконечно протяженной заряженной плоскости. Предположим,
что заряд q равномерно распределен по плоскости. Характеристикой распределения заряда по плоско-
сти является поверхностная плотность заряда.
Поверхностная плотность зарядафизическая величина, равная отношению заряда, равномерно
распределенного по поверхности площадью
S , к величине площади.
Поверхностную плотность заряда принято обозначать греческой буквой
σ . По определению имеем
S
q
=σ
. (1.8.1)
Поверхностная плотность заряда измеряется в Кл/м
2
.
Мысленно разобьем положительно заряженную плоскость на пары одинаковых зарядов, симмет-
ричных относительно некоторой точки О. Проведем перпендикуляр к плоскости, проходящий через
точку О. Напряженность поля в любой точке перпендикуляра, созданная любой парой зарядов, будет
направлена вдоль перпендикуляра от плоскости.
Линии напряженности положительно заряженной бесконечной плоскости направлены от плоско-
сти перпендикулярно ее поверхности.
Если плоскость будет заряжена отрицательно, то, рассуждая аналогично, получим, что линии напря-
женности направлены перпендикулярно к плоскости. Численное значение вектора напряженности вычисля-
ется по формуле