ВУЗ:
Составители:
Рубрика:
f(x) = 0 , F (x) =
x(x−l)
h
cos
πx
2l
.
F (x) = 0 , f(x) =
−2l(1 − cos
πx
l
) , 0 ≤ x ≤ 2l/3
−
27
l
(x − l)
2
, 2l/3 ≤ x ≤ l
.
G = g
x
2l
+ e
2x/l
, f(x) = 0 , F (x) = (x − l) sin
2πx
l
.
G = ge
−
2x
l
sin
2πvt
l
, F (x) = 0, f (x) =
(
4l(1 − cos
πx
l
), 0 ≤ x ≤ 3l/4
64(x−l)
2
l
(1 +
√
2
2
),3l/4 ≤ x ≤ l
ψ = g
e
πvt/l
− e
−πvt/2l
φ = 0
, f(x) = 0 , F (x) =
(x−l)
2
h
sin
πx
2l
.
F (x) = 0 , f(x) =
0 , 0 ≤ x ≤ 3l/8
(x−l)(x−3l/8)
h
, 3l/8 ≤ x ≤ l
.
f(x) = 0 , F (x) =
4l(1 − cos
πx
l
) , 0 ≤ x ≤ 2l/3
54
l
(x − l)
2
, 2l/3 ≤ x ≤ l
.
G = g
e
x
2l
−
3x
2
4l
, F (x) = 0, f (x) =
(
x(
l
4
−x)
h
, 0 ≤ x ≤ l/4
0, l/4 ≤ x ≤ l
G = ge
x
4l
sin
3πvt
l
, f(x) = 0, F (x) =
(
3x
2
l
, 0 ≤ x ≤ l/4
(x−l)
2
3l
, l/4 ≤ x ≤ l
φ = g
e
−
4πvt
l
− e
πvt
2l
ψ = 0
, F (x) = 0, f (x) =
(
x(
l
4
−x)
h
,0 ≤ x ≤ l/4
0, l/4 ≤ x ≤ l
ÂÀÈÀÍÒ 24 Ñïèñîê ëèòåðàòóðû
1. f (x) = 0 , F (x) =
x(x−l)
cos πx [1℄ Òèõîíîâ À.Í., Ñàìàðñêèé À.À. Óðàâíåíèÿ ìàòåìàòè÷åñêîé è-
h 2l .
−2l(1 − cos πx
çèêè. Ì., Íàóêà, 1973
2. F (x) = 0 , f (x) = l ) , 0 ≤ x ≤ 2l/3
.
− 27l (x − l) 2
, 2l/3 ≤x≤l [2℄ Âëàäèìèðîâ Â.Ñ. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçèêè. Ì. Íàóêà,
x
+ e2x/l , f (x) = 0 , F (x) ( = (x − l) sin 2πx
3. G = g 2l l . 1971
πx
2x 4l(1 − cos l ), 0 ≤ x ≤ 3l/4
4. G = ge− l sin 2πvt
l , F (x) = 0, f (x) = 64(x−l)2
√
2 [3℄ Àðàìàíîâè÷ È. ., Ëåâèí Â.È. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçè-
(1 + 2 ),3l/4 ≤ x ≤ l
l êè. Ì. Íàóêà, 1969
πvt/l −πvt/2l
ψ=g e −e 2
5. , f (x) = 0 , F (x) = (x−l) sin πx2l .
φ=0 h [4℄ Î÷àí Þ.Ñ. Ìåòîäû ìàòåìàòè÷åñêîé èçèêè. Ì. Âûñøàÿ øêîëà,
1965
ÂÀÈÀÍÒ 25
[5℄ Êîøëÿêîâ Í.Ñ. è äð. Óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ ìàòåìà-
òè÷åñêîé èçèêè. Ì. Íàóêà, 1970
0, 0 ≤ x ≤ 3l/8
1. F (x) = 0 , f (x) = (x−l)(x−3l/8) .
h , 3l/8 ≤ x ≤ l [6℄ îäóíîâ Ñ.Ê. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçèêè. Ì. Íàóêà, 1971
4l(1 − cos πx
) , 0 ≤ x ≤ 2l/3
2. f (x) = 0 , F (x) = 54 2
l .
l (x − l) , ( 2l/3 ≤ x ≤ l
x( 4l −x)
, 0 ≤ x ≤ l/4
x 3x2
3. G = g e 2l − 4l , F (x) = 0, f (x) = h
0, l/4 ≤ x ≤ l
(
3x2
x
4. G = ge 4l sin 3πvt l , 0 ≤ x ≤ l/4
l , f (x) = 0, F (x) = (x−l)2
4πvt 3l( , l/4 ≤ x ≤ l
πvt x( 4l −x)
φ = g e− l − e 2l ,0≤ x ≤ l/4
5. , F (x) = 0, f (x) = h
ψ=0 0, l/4 ≤ x ≤ l
43 44
