Уравнения математической физики. Уравнение теплопроводности. Хуснутдинов Н.Р. - 14 стр.

UptoLike

Составители: 

f(x) = T
x(x3l/8)
l
2
, 0 x 3l/8
0 , 3l/8 x l
.
f(x) = T
1
7l
2
x
2
, 0 x 2l/3
4
7l
2
(x l)
2
, 2l/3 x l
.
G = g
3x
l
e
x
l
, f(x) = T
(
0, 0 x 3l/8
(xl)(x
3l
8
)
l
2
, 3l/8 x l
G = g
2x
l
+ 4
cos
πvt
l
, f(x) = 0, F (x) =
(
3x
2
l
, 0 x l/3
3(xl)
2
4l
, l/3 x l
φ = g
vt
l
e
πvt
l
e
πvt
l
ψ = 0
, F (x) = 0, f (x) =
(
0, 0 x l/2
(xl)(
l
2
x)
h
,l/2 x l
f(x) = T
x(xl)
l
2
cos
πx
2l
.
f(x) = T
2(1 cos
πx
l
) , 0 x 2l/3
27
l
2
(x l)
2
, 2l/3 x l
.
G = g
x
2l
+ e
2x/l
, f(x) = (
x
l
1) sin
2πx
l
.
G = ge
2x
l
sin
2πvt
l
, F (x) = 0, f (x) =
(
4l(1 cos
πx
l
), 0 x 3l/4
64(xl)
2
l
(1 +
2
2
),3l/4 x l
ψ = g
e
πvt/l
e
πvt/2l
φ = 0
, f(x) = 0 , F (x) =
(xl)
2
h
sin
πx
2l
.
f(x) = T
0 , 0 x 3l/8
(xl)(x3l/8)
l
2
, 3l/8 x l
.
f(x) = T
4(1 cos
πx
l
) , 0 x 2l/3
54
l
2
(x l)
2
, 2l/3 x l
.
G = g
e
x
2l
3x
2
4l
, f(x) = T
(
x(
l
4
x)
l
2
, 0 x l/4
0, l/4 x l
G = ge
x
4l
sin
3πvt
l
, f(x) = 0, F (x) =
(
3x
2
l
, 0 x l/4
(xl)
2
3l
, l/4 x l
φ = g
e
4πvt
l
e
πvt
2l
ψ = 0
, F (x) = 0, f (x) =
(
x(
l
4
x)
h
,0 x l/4
0, l/4 x l
                                               23                                          Ñïèñîê ëèòåðàòóðû
                     x(x−3l/8)
                 
                                   , 0 ≤ x ≤ 3l/8                                           [1℄ Òèõîíîâ À.Í., Ñàìàðñêèé À.À. Óðàâíåíèÿ ìàòåìàòè÷åñêîé è-
1.   f (x) = T          l2                           .
                     0,              3l/8 ≤ x ≤ l                                               çèêè. Ì., Íàóêà, 1973
                1 2
2. f (x) = T     7l2 x ,               0 ≤ x ≤ 2l/3
                                                        .
                  4
                    2 (x −  l)2
                                 ,     2l/3 ≤x≤l                                            [2℄ Âëàäèìèðîâ Â.Ñ. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçèêè. Ì. Íàóêà,
                 7l
                                                                                                1971
                                         (
            3x    − xl
                                           0,               0 ≤ x ≤ 3l/8
3. G = g
             l −e        , f (x) = T        (x−l)(x− 3l
                                                      8 )
                                                  l2 ( , 3l/8 ≤ x ≤ l                       [3℄ Àðàìàíîâè÷ È. ., Ëåâèí Â.È. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçè-
                                                               2
                                                          − 3xl ,        0 ≤ x ≤ l/3            êè. Ì. Íàóêà, 1969
            2x            πvt
                   
4. G = g
             l + 4 cos l , f (x) = 0, F (x) =               3(x−l)2
                                                          −
                                                          ( 4l
                                                                     , l/3 ≤ x ≤ l          [4℄ Î÷àí Þ.Ñ. Ìåòîäû ìàòåìàòè÷åñêîé èçèêè. Ì. Âûñøàÿ øêîëà,
                                                                                                1965
              πvt        πvt
                               
         vt
   φ=g l e     − l
                      −e l                                   0,             0 ≤ x ≤ l/2
5.                                 , F (x) = 0, f (x) =      (x−l)( 2l −x)
   ψ=0                                    24                     h        ,l/2 ≤ x ≤ l     [5℄ Êîøëÿêîâ Í.Ñ. è äð. Óðàâíåíèÿ â ÷àñòíûõ ïðîèçâîäíûõ ìàòåìà-
                                                                                                òè÷åñêîé èçèêè. Ì. Íàóêà, 1970
1. f (x) = T x(x−l)         πx
               l2 cos 2l . πx
                 −2(1 − cos l ) , 0 ≤ x ≤ 2l/3                                              [6℄   îäóíîâ Ñ.Ê. Óðàâíåíèÿ ìàòåìàòè÷åñêîé èçèêè. Ì. Íàóêà, 1971
2. f (x) = T                                               .
                 − 27
                    l2 (x   − l)2 ,        2l/3 ≤ x ≤ l
           x      2x/l
                          , f (x) = ( xl − 1) sin(2πx
                        
3. G = g
           2l + e                                  l .

          − 2x     2πvt                            4l(1 − cos πx l ),
                                                                   √
                                                                       0 ≤ x ≤ 3l/4
4. G = ge    l sin        , F (x) =  0, f (x) =     64(x−l)2
                      l                                              2
                                                        l    (1 + 2 ),3l/4 ≤ x ≤ l
            πvt/l       −πvt/2l
                                
   ψ=g e          −e                                              2
5.                                  , f (x) = 0 , F (x) = (x−l)h    sin πx
                                                                        2l .
   φ=0
                                               25
                 
                     0,                       0 ≤ x ≤ 3l/8
1.   f (x) = T       (x−l)(x−3l/8)                          .
                           l2      ,          3l/8 ≤ x ≤ l
                                πx
                 
                     4(1 − cos l ) ,           0 ≤ x ≤ 2l/3
2.   f (x) = T       54        2                              .
                     l2 (x − l) ,              2l/3 ≤ x ≤ l
                                               (
                                                  x( 4l −x)
                                                            ,   0 ≤ x ≤ l/4
           x               
                      3x2
3.   G = g e 2l −      4l       , f (x) = T            l2
                                                 0,             l/4 ≤ x ≤ l
                                                      (
                                                          3x2
            x
     G = ge sin      3πvt                                  l ,           0 ≤ x ≤ l/4
4.
                       l , f (x)
                         = 0, F (x) =
            4l
                                                          (x−l)2
           4πvt                                           3l( ,        l/4 ≤ x ≤ l
                   πvt                                              x( 4l −x)
     φ = g e− l − e 2l                                                        ,0≤ x ≤ l/4
5.                       , F (x) = 0, f (x) =                            h
     ψ=0                                                            0,        l/4 ≤ x ≤ l



                                           27                                                                           28