ВУЗ:
Рубрика:
éÎÔÅÇÒÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ ÆÕÎËÃÉÉ
ÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅ-
ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ
1.1. ïÂÝÉÅ ÐÏÎÑÔÉÑ
ïÐÒÅÄÅÌÅÎÉÅ 1. æÕÎËÃÉÑ F (x) ÎÁÚÙ×ÁÅÔÓÑ ÐÅÒ×ÏÏÂÒÁÚÎÏÊ ÄÌÑ ÆÕÎËÃÉÉ
f(x) ÎÁ (a, b), ÅÓÌÉ ÄÌÑ ÌÀÂÏÇÏ x ∈ (a, b) F
0
(x) = f(x).
ðÒÉÍÅÒ 1. æÕÎËÃÉÑ sin(5x − 1) ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ ÆÕÎËÃÉÉ
5 cos(5x −1) ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÐÒÑÍÏÊ, ÔÁË ËÁË (sin(5x −1))
0
= 5 cos(5x −1).
åÓÌÉ ÆÕÎËÃÉÑ f (x) ÉÍÅÅÔ ÎÁ (a, b) ÐÅÒ×ÏÏÂÒÁÚÎÕÀ F
0
(x), ÔÏ ÍÎÏÖÅÓÔ×Ï
×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ ÆÕÎËÃÉÉ f(x) ÎÁ (a, b) ÓÏ×ÐÁÄÁÅÔ Ó ÍÎÏÖÅÓÔ×ÏÍ ÆÕÎËÃÉÊ
F (x) = F
0
(x) + C, ÇÄÅ C ¡ ÌÀÂÁÑ ÐÏÓÔÏÑÎÎÁÑ.
ïÐÒÅÄÅÌÅÎÉÅ 2. îÅÏÐÒÅÄÅÌÅÎÎÙÍ ÉÎÔÅÇÒÁÌÏÍ ÏÔ ÆÕÎËÃÉÉ f(x) ÎÁ (a, b)
ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ F (x) (ÅÓÌÉ ÏÎÉ ÓÕÝÅÓÔ×ÕÀÔ)
ÆÕÎËÃÉÉ f (x) ÎÁ (a, b). îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ ÏÔ f(x) ÎÁ (a, b) ÏÂÏÚÎÁ-
ÞÁÅÔÓÑ ÓÉÍ×ÏÌÏÍ
R
f(x) dx; f(x) ÎÁÚÙ×ÁÅÔÓÑ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎËÃÉÅÊ.
ðÒÉÍÅÒ 2. ðÕÓÔØ f(x) = x
2
. æÕÎËÃÉÑ F (x) =
x
3
3
ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ
ÆÕÎËÃÉÉ f (x) = x
2
ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; +∞), ÔÁË ËÁË
x
3
3
0
=
3x
2
3
= x
2
.
ðÏÜÔÏÍÕ
Z
x
2
dx =
x
3
3
+ C.
ðÒÉÍÅÒ 3. ðÕÓÔØ f (x) =
1
x
. ðÅÒ×ÏÏÂÒÁÚÎÏÊ f(x) =
1
x
ÎÁ ÐÒÏÍÅÖÕÔËÅ
(0, +∞) Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÑ F (x) = ln x, Á ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; 0) ÆÕÎËÃÉÑ
F (x) = ln(−x). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ F (x) = ln |x| ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ
ÄÌÑ ÆÕÎËÃÉÉ f (x) =
1
x
ÎÁ ÌÀÂÏÍ ÐÒÏÍÅÖÕÔËÅ, ÎÅ ÓÏÄÅÒÖÁÝÅÍ 0. ðÏÜÔÏÍÕ
Z
dx
x
= ln |x| + C.
ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ:
1) d
R
f(x) dx = f(x) dx;
2)
R
f(x) dx
0
= f (x);
3)
R
df(x) =
R
f
0
(x) dx.
1
éÎÔÅÇÒÁÌØÎÏÅ ÉÓÞÉÓÌÅÎÉÅ ÆÕÎËÃÉÉ ÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. ïÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á ÎÅ- ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ 1.1. ïÂÝÉÅ ÐÏÎÑÔÉÑ ïÐÒÅÄÅÌÅÎÉÅ 1. æÕÎËÃÉÑ F (x) ÎÁÚÙ×ÁÅÔÓÑ ÐÅÒ×ÏÏÂÒÁÚÎÏÊ ÄÌÑ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b), ÅÓÌÉ ÄÌÑ ÌÀÂÏÇÏ x ∈ (a, b) F 0 (x) = f (x). ðÒÉÍÅÒ 1. æÕÎËÃÉÑ sin(5x − 1) ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ ÆÕÎËÃÉÉ 5 cos(5x − 1) ÎÁ ×ÓÅÊ ÞÉÓÌÏ×ÏÊ ÐÒÑÍÏÊ, ÔÁË ËÁË (sin(5x − 1)) 0 = 5 cos(5x − 1). åÓÌÉ ÆÕÎËÃÉÑ f (x) ÉÍÅÅÔ ÎÁ (a, b) ÐÅÒ×ÏÏÂÒÁÚÎÕÀ F0(x), ÔÏ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b) ÓÏ×ÐÁÄÁÅÔ Ó ÍÎÏÖÅÓÔ×ÏÍ ÆÕÎËÃÉÊ F (x) = F0(x) + C, ÇÄÅ C ¡ ÌÀÂÁÑ ÐÏÓÔÏÑÎÎÁÑ. ïÐÒÅÄÅÌÅÎÉÅ 2. îÅÏÐÒÅÄÅÌÅÎÎÙÍ ÉÎÔÅÇÒÁÌÏÍ ÏÔ ÆÕÎËÃÉÉ f (x) ÎÁ (a, b) ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÐÅÒ×ÏÏÂÒÁÚÎÙÈ F (x) (ÅÓÌÉ ÏÎÉ ÓÕÝÅÓÔ×ÕÀÔ) ÆÕÎËÃÉÉ f (x) ÎÁ R(a, b). îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ ÏÔ f (x) ÎÁ (a, b) ÏÂÏÚÎÁ- ÞÁÅÔÓÑ ÓÉÍ×ÏÌÏÍ f (x) dx; f (x) ÎÁÚÙ×ÁÅÔÓÑ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎËÃÉÅÊ. 3 ðÒÉÍÅÒ 2. ðÕÓÔØ f (x) = x2. æÕÎËÃÉÑ F (x) = x3 ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ 3 0 2 ÆÕÎËÃÉÉ f (x) = x2 ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; +∞), ÔÁË ËÁË x3 = 3x3 = x2. ðÏÜÔÏÍÕ x3 Z 2 x dx = + C. 3 ðÒÉÍÅÒ 3. ðÕÓÔØ f (x) = x1 . ðÅÒ×ÏÏÂÒÁÚÎÏÊ f (x) = x1 ÎÁ ÐÒÏÍÅÖÕÔËÅ (0, +∞) Ñ×ÌÑÅÔÓÑ ÆÕÎËÃÉÑ F (x) = ln x, Á ÎÁ ÐÒÏÍÅÖÕÔËÅ (−∞; 0) ÆÕÎËÃÉÑ F (x) = ln(−x). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÆÕÎËÃÉÑ F (x) = ln |x| ÅÓÔØ ÐÅÒ×ÏÏÂÒÁÚÎÁÑ ÄÌÑ ÆÕÎËÃÉÉ f (x) = x1 ÎÁ ÌÀÂÏÍ ÐÒÏÍÅÖÕÔËÅ, ÎÅ ÓÏÄÅÒÖÁÝÅÍ 0. ðÏÜÔÏÍÕ dx Z = ln |x| + C. x ïÓÎÏ×ÎÙÅ R Ó×ÏÊÓÔ×Á ÎÅÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ: 1) d f (x) dx = f (x) dx; R 0 2) R f (x) dxR = f (x); 3) df (x) = f 0(x) dx. 1
Страницы
- 1
- 2
- 3
- 4
- 5
- …
- следующая ›
- последняя »