ВУЗ:
Рубрика:
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 3
10)
R
dx
a
2
+x
2
=
1
a
arctg
x
a
+ C (a 6= 0);
11)
R
dx
a
2
−x
2
=
1
2a
ln
a+x
a−x
+ C (a 6= 0; |x| 6= |a|);
12)
R
dx
√
a
2
−x
2
= arcsin
x
a
+ C (a 6= 0; |x| < |a|);
13)
R
dx
√
x
2
+k
= ln |x +
√
x
2
+ k| + C (k 6= 0, × ÓÌÕÞÁÅ k < 0 |x| > |k|);
14)
R
sh x dx = ch x + C;
15)
R
ch x dx = sh x + C;
16)
R
dx
ch
2
x
= th x + C;
17)
R
dx
sh
2
x
= −cth x + C; (x 6= 0).
ôÁÂÌÉÃÁ ÏÓÎÏ×ÎÙÈ ÄÉÆÆÅÒÅÎÃÉÁÌÏ×.
1) dx =
1
a
d(ax + b) (a 6= 0);
2) x
p
dx =
dx
p+1
p+1
(p 6= −1);
3)
dx
x
= d(ln |x|) (x 6= 0);
4) sin x dx = −d cos x;
5) cos x dx = d sin x;
6)
dx
cos
2
x
= d tg x;
7)
dx
sin
2
x
= −d ctg x;
8) a
x
dx =
da
x
ln a
; e
x
dx = de
x
;
9) sh x dx = d ch x;
10) ch x dx = d sh x;
11)
dx
√
1−x
2
= d arcsin x = −d arccos x;
12)
dx
1+x
2
= d arctg x = −d arcctg x.
1.2. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ÐÕÔÅÍ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ
ïÄÉÎ ÉÚ ÎÁÉÂÏÌÅÅ ÒÁÓÐÒÏÓÔÒÁÎÅÎÎÙÈ ÍÅÔÏÄÏ×, ÐÒÉÍÅÎÑÅÍÙÈ ÐÒÉ ×ÙÞÉ-
ÓÌÅÎÉÉ ÎÅÏÐÒÅÄÅÌÅÎÎÙÈ ÉÎÔÅÇÒÁÌÏ× ¡ ÍÅÔÏÄ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ. ÷ ÅÇÏ
ÏÓÎÏ×Å ÌÅÖÁÔ ÐÒÁ×ÉÌÁ 3 É 4, ÓÆÏÒÍÕÌÉÒÏ×ÁÎÎÙÅ × ÐÒÅÄÙÄÕÝÅÍ ÐÕÎËÔÅ. íÅ-
ÔÏÄ ÐÏÄÓÔÁÎÏ×ËÉ ÓÏÓÔÏÉÔ × ÔÏÍ, ÞÔÏ ÓÏÏÂÒÁÚÎÏ ×ÉÄÕ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎË-
ÃÉÉ ÓÏÓÔÁ×ÌÑÀÔ ×ÓÐÏÍÏÇÁÔÅÌØÎÕÀ ÆÕÎËÃÉÀ, ÐÏÄÓÔÁÎÏ×ËÁ ËÏÔÏÒÏÊ × ÉÓÈÏÄ-
ÎÙÊ ÉÎÔÅÇÒÁÌ ÐÒÉ×ÏÄÉÔ ÅÇÏ Ë ×ÉÄÕ, ÂÏÌÅÅ ÕÄÏÂÎÏÍÕ ÄÌÑ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ.
÷ÙÄÅÌÑÀÔÓÑ Ä×Å ÆÏÒÍÙ ÐÏÄÓÔÁÎÏ×ËÉ.
I. ðÕÓÔØ ÔÒÅÂÕÅÔÓÑ ×ÙÞÉÓÌÉÔØ ÉÎÔÅÇÒÁÌ
R
g(x) dx. óÏÇÌÁÓÎÏ ÐÒÁ×ÉÌÕ 3
×ÙÂÅÒÅÍ, ÅÓÌÉ ÜÔÏ ÕÄÁÅÔÓÑ, ÔÁËÕÀ ÆÕÎËÃÉÀ u(x), ÞÔÏ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÅ ×Ù-
ÒÁÖÅÎÉÅ ÐÒÅÄÓÔÁ×ÌÑÅÔÓÑ × ×ÉÄÅ:
Z
g(x) dx =
Z
f(u(x))u
0
(x) dx =
Z
f(u(x)) du(x).
ôÏÇÄÁ, ÄÅÌÁÑ ÚÁÍÅÎÕ ÐÅÒÅÍÅÎÎÙÈ t = u(x), ÐÏ ÓËÁÚÁÎÎÏÍÕ ×ÙÛÅ, ÄÏÓÔÁÔÏÞÎÏ
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 3 10) a2dx = a1 arctg xa + C (a 6= 0); R R dx +x2 1 a+x 11) a2 −x2 = 2a ln a−x + C (a 6= 0; |x| 6= |a|); 12) √a2 −x2 = arcsin xa + C (a 6= 0; |x| < |a|); R dx √ 13) √xdx R 2 +k = ln |x + x2 + k| + C (k 6= 0, × ÓÌÕÞÁÅ k < 0 |x| > |k|); R 14) R sh x dx = ch x + C; 15) R ch x dx = sh x + C; 16) chdx2 x = th x + C; 17) shdx2 x = − cth x + C; (x 6= 0). R ôÁÂÌÉÃÁ ÏÓÎÏ×ÎÙÈ ÄÉÆÆÅÒÅÎÃÉÁÌÏ×. 1) dx = a1 d(ax + b) (a 6= 0); p+1 2) xp dx = dxp+1 (p 6= −1); 3) dx x = d(ln |x|) (x 6= 0); 4) sin x dx = −d cos x; 5) cos x dx = d sin x; 6) cosdx2 x = d tg x; 7) sindx2 x = −d ctg x; x 8) ax dx = da x ln a ; e dx = de ; x 9) sh x dx = d ch x; 10) ch x dx = d sh x; dx 11) √1−x 2 = d arcsin x = −d arccos x; dx 12) 1+x 2 = d arctg x = −d arcctg x. 1.2. éÎÔÅÇÒÉÒÏ×ÁÎÉÅ ÐÕÔÅÍ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ ïÄÉÎ ÉÚ ÎÁÉÂÏÌÅÅ ÒÁÓÐÒÏÓÔÒÁÎÅÎÎÙÈ ÍÅÔÏÄÏ×, ÐÒÉÍÅÎÑÅÍÙÈ ÐÒÉ ×ÙÞÉ- ÓÌÅÎÉÉ ÎÅÏÐÒÅÄÅÌÅÎÎÙÈ ÉÎÔÅÇÒÁÌÏ× ¡ ÍÅÔÏÄ ÚÁÍÅÎÙ ÐÅÒÅÍÅÎÎÙÈ. ÷ ÅÇÏ ÏÓÎÏ×Å ÌÅÖÁÔ ÐÒÁ×ÉÌÁ 3 É 4, ÓÆÏÒÍÕÌÉÒÏ×ÁÎÎÙÅ × ÐÒÅÄÙÄÕÝÅÍ ÐÕÎËÔÅ. íÅ- ÔÏÄ ÐÏÄÓÔÁÎÏ×ËÉ ÓÏÓÔÏÉÔ × ÔÏÍ, ÞÔÏ ÓÏÏÂÒÁÚÎÏ ×ÉÄÕ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÊ ÆÕÎË- ÃÉÉ ÓÏÓÔÁ×ÌÑÀÔ ×ÓÐÏÍÏÇÁÔÅÌØÎÕÀ ÆÕÎËÃÉÀ, ÐÏÄÓÔÁÎÏ×ËÁ ËÏÔÏÒÏÊ × ÉÓÈÏÄ- ÎÙÊ ÉÎÔÅÇÒÁÌ ÐÒÉ×ÏÄÉÔ ÅÇÏ Ë ×ÉÄÕ, ÂÏÌÅÅ ÕÄÏÂÎÏÍÕ ÄÌÑ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÑ. ÷ÙÄÅÌÑÀÔÓÑ Ä×Å ÆÏÒÍÙ ÐÏÄÓÔÁÎÏ×ËÉ. R I. ðÕÓÔØ ÔÒÅÂÕÅÔÓÑ ×ÙÞÉÓÌÉÔØ ÉÎÔÅÇÒÁÌ g(x) dx. óÏÇÌÁÓÎÏ ÐÒÁ×ÉÌÕ 3 ×ÙÂÅÒÅÍ, ÅÓÌÉ ÜÔÏ ÕÄÁÅÔÓÑ, ÔÁËÕÀ ÆÕÎËÃÉÀ u(x), ÞÔÏ ÐÏÄÙÎÔÅÇÒÁÌØÎÏÅ ×Ù- ÒÁÖÅÎÉÅ ÐÒÅÄÓÔÁ×ÌÑÅÔÓÑ × ×ÉÄÅ: Z Z Z 0 g(x) dx = f (u(x))u (x) dx = f (u(x)) du(x). ôÏÇÄÁ, ÄÅÌÁÑ ÚÁÍÅÎÕ ÐÅÒÅÍÅÎÎÙÈ t = u(x), ÐÏ ÓËÁÚÁÎÎÏÍÕ ×ÙÛÅ, ÄÏÓÔÁÔÏÞÎÏ