ВУЗ:
Рубрика:
12 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
ôÏÇÄÁ ÉÎÔÅÇÒÁÌ ÏÔ ÄÒÏÂÉ III ÚÁÐÉÛÅÔÓÑ × ×ÉÄÅ:
Z
Ax + B
x
2
+ px + q
dx =
Z
Ax + B
x +
p
2
2
+ k
dx =
Z
A
x +
p
2
−
p
2
+ B
x +
p
2
2
+ k
dx =
=
Z
A
x +
p
2
x +
p
2
2
+ k
dx +
Z
B − A ·
p
2
x +
p
2
2
+ k
dx =
Z
At
t
2
+ k
dt +
Z
B − A ·
p
2
t
2
+ k
dt,
ÇÄÅ t = x +
p
2
.
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t
2
+ k, Á ÉÍÅÎÎÏ:
Z
t dt
t
2
+ k
=
1
2
Z
dt
2
t
2
+ k
=
1
2
Z
d(t
2
+ k)
t
2
+ k
=
1
2
ln |t
2
+ k| + C.
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ
R
dt
t
2
+k
Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ.
ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÄÒÏÂÉ IV ÁÎÁÌÏÇÉÞÎÏ III ÐÏÌÕÞÉÍ:
Z
Ax + B
(x
2
+ px + q)
m
dx =
Z
Ax + B dx
x +
p
2
2
+ k
m
=
Z
A
x +
p
2
−
p
2
+ B
x +
p
2
2
+ k
m
dx =
= A
Z
t dt
(t
2
+ k)
m
+
B − A ·
p
2
·
Z
dt
(t
2
+ k)
m
.
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t
2
+ k, Á ÉÍÅÎÎÏ:
Z
t dt
(t
2
+ k)
m
=
1
2
Z
dt
2
(t
2
+ k)
m
=
1
2
Z
d(t
2
+ k)
(t
2
+ k)
m
=
1
2
Z
du
u
m
=
= −
1
2
·
1
m − 1
·
1
u
m−1
+ C = −
1
2(m − 1)
·
1
(t
2
+ k)
m−1
+ C.
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÍÅÔÏÄÏÍ ÐÏÎÉÖÅÎÉÑ. ðÕÓÔØ I
m
=
R
dt
(t
2
+k)
m
,
ÔÏÇÄÁ I
m−1
=
R
dt
(t
2
+k)
m−1
.
òÁÓÓÍÏÔÒÉÍ ÉÎÔÅÇÒÁÌ I
m
:
I
m
=
Z
dt
(t
2
+ k)
m
=
1
k
Z
k
(t
2
+ k)
m
dt =
1
k
Z
k + t
2
− t
2
(t
2
+ k)
m
dt =
=
1
k
·
Z
k + t
2
(t
2
+ k)
m
dt −
Z
t
2
(t
2
+ k)
m
dt
=
=
1
k
Z
dt
(t
2
+ k)
m−1
−
Z
t ·
t dt
(t
2
+ k)
m
=
1
k
·
I
m−1
−
1
2
Z
t
d(t
2
+ k)
(t
2
+ k)
m
.
12 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
ôÏÇÄÁ ÉÎÔÅÇÒÁÌ ÏÔ ÄÒÏÂÉ III ÚÁÐÉÛÅÔÓÑ × ×ÉÄÅ:
A x + p2 − p2 + B
Ax + B Ax + B
Z Z Z
dx = 2 dx = 2 dx =
x2 + px + q x + p2 + k x + p2 + k
A x + 2p B − A · p2 B − A · p2
At
Z Z Z Z
= 2 dx + 2 dx = dt + dt,
x + p2 + k x + p2 + k t2 + k t2 + k
ÇÄÅ t = x + 2p .
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t2 + k, Á ÉÍÅÎÎÏ:
t dt 1 dt2 1 d(t2 + k) 1
Z Z Z
2
= 2
= 2
= ln |t2 + k| + C.
t +k 2 t +k 2 t +k 2
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ t2dt+k Ñ×ÌÑÅÔÓÑ ÔÁÂÌÉÞÎÙÍ.
R
ðÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÄÒÏÂÉ IV ÁÎÁÌÏÇÉÞÎÏ III ÐÏÌÕÞÉÍ:
A x + 2p − p2 + B
Ax + B Ax + B dx
Z Z Z
dx = m = m dx =
(x2 + px + q)m
2 2
x + p2 + k x + p2 + k
t dt p dt
Z Z
=A + B − A · · .
(t2 + k)m 2 (t2 + k)m
ðÅÒ×ÙÊ ÉÎÔÅÇÒÁÌ ÌÅÇËÏ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏÄÓÔÁÎÏ×ËÏÊ u = t2 + k, Á ÉÍÅÎÎÏ:
t dt 1 dt2 1 d(t2 + k) 1 du
Z Z Z Z
= = = =
(t2 + k)m 2 (t2 + k)m 2 (t2 + k)m 2 um
1 1 1 1 1
=− · · m−1 + C = − · 2 + C.
2 m−1 u 2(m − 1) (t + k)m−1
R dt
÷ÔÏÒÏÊ ÉÎÔÅÇÒÁÌ ×ÙÞÉÓÌÑÅÔÓÑ ÍÅÔÏÄÏÍ ÐÏÎÉÖÅÎÉÑ. ðÕÓÔØ I m = (t2 +k) m,
dt
R
ÔÏÇÄÁ Im−1 = (t2 +k) m−1 .
òÁÓÓÍÏÔÒÉÍ ÉÎÔÅÇÒÁÌ Im:
dt 1 k 1 k + t2 − t 2
Z Z Z
Im = = dt = dt =
(t2 + k)m k (t2 + k)m k (t2 + k)m
k + t2 t2
Z
1
Z
= · dt − dt =
k (t2 + k)m (t2 + k)m
d(t2 + k)
Z
1 dt t dt 1 1
Z Z
= − t· 2 = · Im−1 − t 2 .
k (t2 + k)m−1 (t + k)m k 2 (t + k)m
Страницы
- « первая
- ‹ предыдущая
- …
- 10
- 11
- 12
- 13
- 14
- …
- следующая ›
- последняя »
