Конспект лекций по термодинамике. Коренблит С.Э. - 64 стр.

UptoLike

Составители: 

                                 |64|
   à¨ H = Hc = 0 ¯¥à¥å®¤ ¨¤¥â ¯à¨ ­¥¨§¬¥­­ëå §­ 祭¨ïå í­âய¨¨
¨ ®¡ê¥¬ , â.¥. ï¥âáï ä §®¢ë¬ ¯¥à¥å®¤®¬ 2-£® த . „¨ää¥à¥­æ¨àãï
ãà ¢­¥­¨ï (6.60), (6.61) ¯® T ¨ ¯® P , ᮮ⢥âá⢥­­®, ­ ©¤¥¬ ᪠窨 â¥-
¯«®¥¬ª®á⨠CP = CsP CnP (ä®à¬ã« ã⣥àá ) ¨ ᦨ¬ ¥¬®áâ¨:
                " @s !             ! #         0        1
         CP = T    s          @sn
                                         = Tv s @ @Hc (T ) A > 0; (6.64)
                                                            2



                         @T P @T P H       4      @T P
                        " @v !
                                     c =0
                                     ! #        0           1
      KT =          1      s   @v n         1    @H   (T ) 2


                                          = @ c A > 0: (6.65)
                    v s @P T @P T H    c =0
                                            4 @P T
ˆ ⥯«®¥¬ª®áâì, ¨ ᦨ¬ ¥¬®áâì ¢ ᢥàå¯à®¢®¤ï饩 ä §¥ ®ª §ë¢ ¥âáï
¡®«ìè¥, 祬 ¢ ­®à¬ «ì­®© ä §¥.
   ([1], [2], [4], [5])
   ‡ ¤ ç¨
6.1.  ©â¨ ¬ £­¨â­ãî ¢®á¯à¨¨¬ç¨¢®áâì T ¯ à ¬ £­¥â¨ª M = T H,
¥á«¨ ¥£® ⥯«®¥¬ª®áâì CM ­¥ § ¢¨á¨â ®â ­ ¬ £­¨ç¥­­®á⨠M.
6.2. „¨í«¥ªâਪ á ¤¨í«¥ªâà¨ç¥áª®© ¯à®­¨æ ¥¬®áâìî (T ) ¢¤¢¨­ãâ ¢ ¯«®á-
ª¨© ª®­¤¥­á â®à á í«¥ªâà¨ç¥áª¨¬ ¯®«¥¬ E ¤® ®¡ê¥¬ V = abx.  ©â¨: (a)
(T; E ), S (T; E ) ¤¨í«¥ªâਪ ¢ í⮬ ¯®«¥; (b) ⥯«® QT , ¢ë¤¥«¨¢è¥-
¥áï (?) ¢ ª®­¤¥­á â®à¥ á ¤¨í«¥ªâਪ®¬ ¯à¨ ¨§®â¥à¬¨ç¥áª®¬ ¢®§à áâ ­¨¨
¯®«ï ®â 0 ¤® E ; (c) ᨫã fx á ª®â®à®© ¤¨í«¥ªâਪ ¢â¢ ¥âáï (?) ¢ ª®­-
¤¥­á â®à; (d) ¯«®â­®áâì (ᮡá⢥­­®© ) ¢­ãâ७­¥© í­¥à£¨¨ ¤¨í«¥ªâਪ
u(T; E ).  áᬮâà¥âì á«ãç © ¯®«ïà­®£®: (T ) = 1 + B=T , ¨ ­¥¯®«ïà­®£®:
(T ) = const, ¤¨í«¥ªâਪ®¢.
6.3.  ©â¨ ¬ «®¥ ®â­®á¨â¥«ì­®¥ ¨§¬¥­¥­¨¥ 1  jvH v j=v ᪮à®áâ¨
§¢ãª v ¯à¨ ­ «®¦¥­¨¨ á« ¡®£® ¬ £­¨â­®£® ¯®«ï H ¤«ï ¨¤¥ «ì­®£®:
                                                                0   0




P = (%=)RT , ¤¨ - ¨ ¯ à - ¬ £­¨â­®£® £ §®¢: M = T H, T = d;p
       0


                                                                 T .
6.4. Œ £­¥â¨ª ®¡ê¥¬®¬ V ¢ á« ¡®¬ ¬ £­¨â­®¬ ¯®«¥ H ¯®¤ ¢­¥è­¨¬ ¤ -
¢«¥­¨¥¬ P ¨¬¥¥â ­ ¬ £­¨ç¥­­®áâì ¥¤¨­¨æë ®¡ê¥¬ M = T H ¨ ¯®«­ë©
¬ £­¨â­ë© ¬®¬¥­â M = MV . ‘ç¨â ï ¥£® ᦨ¬ ¥¬®áâì KS = const,
­ ©â¨ á¢ï§ì ®¡ê¥¬­®© ¬ £­¨â®áâਪ樨 (@V=@ H)P;S á ¯ì¥§®¬ £­¨â­ë¬
íä䥪⮬ (@ M=@P )H;S ¨ ¢ëà §¨âì V=V  1 ç¥à¥§ H. ¥è¨¢ âã ¦¥
§ ¤ çã ¤«ï á«ãç ï (S ) ! (T ), â.¥. KS ! KT , ª®£¤ ¯®«¥ H ­¥ ¬¥­ï¥â
ãà ¢­¥­¨ï á®áâ®ï­¨ï P = P (T; V ), ­ ©â¨ § ¢¨á¨¬®áâì KS (H).
6.5. ‚ëà §¨âì ¨§¬¥­¥­¨¥ ⥯«®¥¬ª®á⨠CH « ­¦¥¢¥­®¢áª®£® ¯ à ¬ £-
­¥â¨ª ¢® ¢­¥è­¥¬ ¯®«¥ H ¢ â¥à¬¨­ å ¥£® ¢®á¯à¨¨¬ç¨¢®á⨠T .