Лекции по векторному и тензорному анализу. Лосик М.В. - 45 стр.

UptoLike

Составители: 

γ
~r(u(t), v(t))
t γ
x(u, v), y(u, v), z(u, v) ~r(u v)
I
γ
(~a, d ~r) =
Z
b
a
a
x
(u(t) v(t))
x
u
u
0
(t) +
x
v
v
0
(t)
+ a
y
(u(t) v(t))
y
u
u
0
(t)+
y
v
v
0
(t)
+ a
z
(u(t) v(t))
z
u
u
0
(t) +
z
v
v
0
(t)
d t =
I
λ
(~a, ~r
u
)du + (~a, ~r
u
)dv.
H
γ
(~a, d ~r)
u, v
I
γ
(~a, d ~r) =
Z
D
(~a, ~r
v
)
u
(~a, ~r
u
)
v
=
Z
D

∂~a
u
, ~r
v
∂~a
v
, ~r
u

du dv.
~τ = ~r
u
/|~r
u
| s
u = u, v = onst u = u(s)
P (~τ) =
d (~a(u(s), v)
d s
=
∂~a
u
u
0
(s).
d~r(u(s), v)
ds
= ~r
u
u
0
(s),
∂~a
u
= P (~r
u
)
∂~a
v
= P (~r
v
)
I
γ
(~a, d ~r) =
Z
D
(rot~a, [~r
u
, ~r
v
])du dv.
[~r
u
, ~r
v
] = |[~r
u
, ~r
v
]|~n A, B, C [~r
u
, ~r
v
]
A =
y
u
z
u
y
v
z
v
, B =
z
u
x
u
y
z
x
v
, C =
x
u
y
u
x
v
y
v
,
I
γ
(~a, d ~r) =
Z
D
(rot~a, ~n)|[~r
u
, ~r
v
]|du dv =
Z
D
(rot~a, ~n)
A
2
+ B
2
+ C
2
du dv.