Методы и средства измерений, испытаний и контроля. Никитин В.А - 352 стр.

UptoLike

Составители: 

Рубрика: 

Уравнение движения поплавка в ротаметре выводится из условий его
обтекания потоком жидкости или газа. Предполагается, что поток одномерный,
начало координат помещается в плоскости теоретического нуля ротаметра,
расход жидкости постоянен.
Применительно к ротаметрической паре первого (основного) типа
можно утверждать, что на поплавок действуют:
Сила тяжести (17.10)
)()(
ii
WmggWG
ρ
ρ
ρ
=
=
, (17.10)
где W - объем поплавка;
i
ρ
ρ
,
- плотность жидкости и материала поплавка соответственно;
m - масса поплавка;
Сила гидродинамического напора (17.11)
42
)(
2
2
d
CP
xi
X
π
υυρ
=
, (17.11)
где υ - средняя скорость потока в кольцевом зазоре;
υ
х
- скорость поплавка относительно неподвижной трубки (начала
отсчета);
С
х
- коэффициент сопротивления поплавка.
Средняя скорость в кольцевом зазоре вычисляют по (17.12)
[]
)(
22
ααπω
υ
tgxdxtg
QQ
+
==
, (17.12)
где
ω
- площадь кольцевого зазора.
При установившемся режиме х = h, а Р-G = 0. Тогда получим формулу
(17.13)
222
22
)(8
ααπ
ρ
tghhdtg
Qd
С
i
x
+
=
, (17.13)
Путем преобразований из уравнения (17.13) можно получить формулу
(17.14) для вычисления расхода
       Уравнение движения поплавка в ротаметре выводится из условий его
обтекания потоком жидкости или газа. Предполагается, что поток одномерный,
начало координат помещается в плоскости теоретического нуля ротаметра,
расход жидкости постоянен.
       Применительно к ротаметрической паре первого (основного) типа
можно утверждать, что на поплавок действуют:
       Сила тяжести (17.10)

                              G = gW ( ρ − ρ i ) = g ( m − Wρ i ) ,            (17.10)

          где W - объем поплавка;
             ρ , ρ i - плотность жидкости и материала поплавка соответственно;
              m - масса поплавка;

          Сила гидродинамического напора (17.11)

                                               ρ i (υ − υ x ) 2 πd 2
                                P = CX                                 ,       (17.11)
                                                     2           4

          где υ - средняя скорость потока в кольцевом зазоре;
              υх - скорость поплавка относительно неподвижной трубки (начала
                    отсчета);
              Сх - коэффициент сопротивления поплавка.

          Средняя скорость в кольцевом зазоре вычисляют по (17.12)

                                   Q                 Q
                             υ =       =
                                   ω       [
                                           π ( dxtg α + x 2 tg 2α )
                                                                    ,
                                                                           ]   (17.12)


          где ω - площадь кольцевого зазора.
          При установившемся режиме х = h, а Р-G = 0. Тогда получим формулу
(17.13)

                                         ρi d 2Q2
                              Сx =                                     ,       (17.13)
                                   8π (hdtgα + h2tg2α)2

       Путем преобразований из уравнения (17.13) можно получить формулу
(17.14) для вычисления расхода