Электрические цепи постоянного и переменного токов. Николаев Г.М - 15 стр.

UptoLike

Рубрика: 

Рис. 1
Общий ток цепи I разветвляется на ток в катушке I
L
(индуктивная составляющая общего тока) и ток в резисторе
I
R
(активная составляющая).
Между токами I, I
L
И I
R
существуют фазовые сдвиги,
обусловленные индуктивным реактивным сопротивлением
X
L
катушки. Они могут быть представлены с помощью
векторной диаграммы токов (рис. 2).
Рис. 2 Рис. 3
Фазовый сдвиг между напряжением U цепи и током
в резисторе I
R
отсутствует, тогда как ток в катушке I
L
всегда отстает от напряжения цепи (или тока в резисторе I
R
)
на 90º. При этом сдвиг между полным током I и
напряжением цепи U определяется соотношением между
проводимостями B
L
И G.
29
Разделив каждую сторону треугольника токов на
напряжение, получим треугольник проводимостей (рис. 3),
в котором Y представляет собой так называемую полную
проводимость цепи, G - активную, a B
L
- реактивную
(индуктивную) проводимости.
Из-за фазового сдвига между током и напряжением
в цепях, подобных данной, простое арифметическое
сложение действующих или амплитудных значений токов
в параллельных ветвях, как в параллельной чисто
резистивной цепи, невозможно. Только в векторной форме
I = I
R
+I
L
. Расчет ведется по следующим формулам:
Действующее значение полного тока цепи:
;
;
22
UYZUI
III
LR
==
+=
Полная проводимость цепи:
где Z - полное сопротивление цепи;
Угол сдвига фаз:
(
)
(
)
;GBarctgIIarctg
LRL
=
=
ϕ
Активное сопротивление цепи:
Реактивное сопротивление цепи:
30
                                                                    Разделив каждую сторону треугольника токов на
                                                              напряжение, получим треугольник проводимостей (рис. 3),
                                                              в котором Y представляет собой так называемую полную
                                                              проводимость цепи, G - активную, a BL- реактивную
                                                              (индуктивную) проводимости.
                                                                    Из-за фазового сдвига между током и напряжением
                                                              в цепях, подобных данной, простое арифметическое
                                                              сложение действующих или амплитудных значений токов
                          Рис. 1                              в параллельных ветвях, как в параллельной чисто
                                                              резистивной цепи, невозможно. Только в векторной форме
      Общий ток цепи I разветвляется на ток в катушке IL      I = IR +IL. Расчет ведется по следующим формулам:
(индуктивная составляющая общего тока) и ток в резисторе            Действующее значение полного тока цепи:
IR (активная составляющая).
      Между токами I, IL И IR существуют фазовые сдвиги,                              I = I R2 + I L2 ;
обусловленные индуктивным реактивным сопротивлением
                                                                                      I = U Z = UY ;
XL катушки. Они могут быть представлены с помощью
векторной диаграммы токов (рис. 2).
                                                                   Полная проводимость цепи:




                                                              где Z - полное сопротивление цепи;


                                                                   Угол сдвига фаз:
          Рис. 2                            Рис. 3
                                                                           ϕ = arctg (I L I R ) = arctg (B L G );
                                                                   Активное сопротивление цепи:
     Фазовый сдвиг между напряжением U цепи и током
в резисторе IR отсутствует, тогда как ток в катушке IL
всегда отстает от напряжения цепи (или тока в резисторе IR)        Реактивное сопротивление цепи:
на 90º. При этом сдвиг между полным током I и
напряжением цепи U определяется соотношением между
проводимостями BL И G.
                            29                                                                   30