ВУЗ:
Составители:
Рубрика:
59
.
])(1)(2[
'
1
1
2
^^
2
^
'2'
c
1
1
1
∑
ω−−ω+ωξ
∑
=
−
=
−
=
n
i
ci
n
i
i
a
k
II
K
aa
aM
A
&
(12)
Ihjy^hd\uiheg_gbyjZ[hlu
1. BkihevamymklZgh\dmkfjbkihemqblvaZ\bkbfhklvm]eZaZdjmldb
fZoh\bdZ^_fin_jZhlijbeh`_ggh]hdjmlys_]hfhf_glZJ_amevlZluaZf_
jh\ijbgZ]jm`_gbbbjZa]jm`_gbbaZg_klb\lZ[ebpmihnhjf_lZ[e.
2. Bkihevamy ihemq_ggu_ ^Zggu_
,
ihkljhblv i_lex ]bkl_j_abkZ j_ab
gh\h]hkehy^_fin_jZ\dhhj^bgZlZoF
- ϕ
.
3. BkihevamyaZ\bkbfhklvF
- ϕ
,
hij_^_eblvmkj_^g_ggucdhwnnbpb_gl
`_kldhklbKj_abgh\h]hkehyihnhjfme_K
=
F
ϕ
bhlghkbl_evguc
dhwn
nbpb_gl^_finbjh\Zgbyihnhjfme_
S/SEE
imaxi
'
^
==ξ
. (13)
AZibkZlvhkpbeeh]jZffmk\h[h^guodhe_[Zgbc^_fin_jZ
Ihnhjfme_9jZkkqblZlv^bgZfbq_kdbcdhwnnbpb_gl`_kldhklb
j_abgh\h]hkehyK
^.
Dhgljhevgu_\hijhku
H[tykgbl_ gZagZq_gb_ ^_fin_jh\ djmlbevguo dhe_[Zgbc dhe_gqZ
luo\Zeh\><K
Hibrbl_dhgkljmdpbx^_fin_jZk\gmlj_ggbflj_gb_f
QlhgZau\Z_lkydhwnnbpb_glhfhlghkbl_evgh]h\gmlj_gg_]h lj_gby
j_abgu^_fin_jZ"
Hibrbl_dhgkljmdpbxmklZgh\db^eyhij_^_e_gby`_kldhklguooZ
jZdl_jbklbdj_abgh\h]hkehy^_fin_jZ
H[tykgbl_f_lh^bdmhij_^_e_gbyklZlbq_kdh]hdhwnnbpb_glZ`_k-
ldhklbj_abgh\h]hkehy
H[tykgbl_ f_lh^bdm hij_^_e_gby ^bgZfbq_kdh]h dhwnnbpb_glZ
`_kldhklbj_abgh\h]hkehy
n −1&
M ka ∑ a i
i =1
A1 = . (12)
n −1
ξ 'ω '
c ∑ [ai2 + 2ω'c (a^ − 1) 2
K^ I − ( Iω^ ) ]
2
i =1
Ihjy^hd\uiheg_gbyjZ[hlu
1. BkihevamymklZgh\dm kfjbk ihemqblvaZ\bkbfhklvm]eZaZdjmldb
fZoh\bdZ^_fin_jZhlijbeh`_ggh]hdjmlys_]hfhf_glZJ_amevlZluaZf_
jh\ijbgZ]jm`_gbbbjZa]jm`_gbbaZg_klb\lZ[ebpmihnhjf_lZ[e.
2. Bkihevamy ihemq_ggu_ ^Zggu_, ihkljhblv i_lex ]bkl_j_abkZ j_ab
gh\h]hkehy^_fin_jZ\dhhj^bgZlZoF- ϕ.
3. BkihevamyaZ\bkbfhklvF- ϕ,hij_^_eblvmkj_^g_ggucdhwnnbpb_gl
`_kldhklbKj_abgh\h]hkehyihnhjfme_K=Fϕ bhlghkbl_evguc dhwn
nbpb_gl^_finbjh\Zgbyihnhjfme_
ξ '^ = Ei Emax = S i / S . (13)
AZibkZlvhkpbeeh]jZffmk\h[h^guodhe_[Zgbc^_fin_jZ
Ihnhjfme_ 9 jZkkqblZlv^bgZfbq_kdbcdhwnnbpb_gl`_kldhklb
j_abgh\h]hkehyK^.
Dhgljhevgu_\hijhku
H[tykgbl_ gZagZq_gb_ ^_fin_jh\ djmlbevguo dhe_[Zgbc dhe_gqZ
luo\Zeh\>