ВУЗ:
Составители:
Рубрика:
10
2
ϑπ
=
12
Q=−
.
nn=−
f
() ( )
ff
ϑπϑ
=−
.
() ()
cos cos 0
an f d
ϑϑϑω
== ≡
∫
1
P
,
()
()
()
22
2
11
3cos 1 3cos 1
22
QfdP
ϑϑϑω
=−= −=
∫
. (2)
() ( )
cos
ll
QP f P d
ϑϑω
==
∫
, (3)
—
() ( )
0
cos
ll
l
fCP
ϑϑ
∞
=
=
∑
,
l
C
()()
212 cos
ll
Cl P
ϑ
=+
.
()
()
2
cos 1
1
,0,!1
2!
n
n
n
nn
d
Pnn
n
d
ϑ
ω
−
===
.
01
1, cos
PP
ϑ
==
,
2
2
3cos 1
2
P
ϑ
−
=
,
()
3
3
1
5cos 3cos 0
2
P
ϑϑ
=−≡
,
{}
42
4
1
35cos 30cos 3
8
P
ϑϑ
=−+
,
() ()
21
cos
2
ll
l
l
fPP
ϑϑ
+
=
∑
,
()()
cos sin
ll
PP f d
ϑϑϑϑ
=
∫
—
2
PQ=
4
P
.
?keb ϑ = π 2 i_ji_g^bdmeyjgh_ jZkiheh`_gb_ lh Q = −1 2 . LZd dZd n = −n lh ^ey nmgdpbb f kijZ\_^eb\h f (ϑ ) = f (π − ϑ ) . IZjZf_lju ihjy^dZ fh]ml [ulv hij_^_e_gu dZd cosϑ = ( an ) = ∫ f (ϑ ) cosϑ d ω ≡ 0 P1 , Q= 1 2 ( ) 1 ( 3cos2 ϑ − 1 = ∫ f (ϑ ) 3cos2 ϑ − 1 2 )dω = P2 . (2 ) < h[s_f kemqZ_ fh`gh aZibkZlv Q = Pl = ∫ f (ϑ ) Pl (cosϑ )dω , (3 ) ]^_ O — q_lgh_ qbkeh LZdbf h[jZahf nmgdpby hjb_glZpbhggh]h jZkij_^_e_gby fhe_dme g_fZlbq_kdhc nZau fh`_l [ulv ij_^klZ\ e_gZ k mq_lhf \deZ^h\ ke_^mxsbo fmevlbihe_c dhlhju_ aZibku \Zxlky \ \b^_ ihebghfh\ E_`Zg^jZ ∞ f (ϑ ) = ∑ Cl Pl (cosϑ ) , l =0 ijb wlhf dhwnnbpb_glu Cl fh]ml [ulv ij_^klZ\e_gu \ \b^_ Cl = ( 2l + 1) 2 Pl ( cosϑ ) . < h[s_f kemqZ_ ^ey dhwnnbpb_glh\ J fhf_glh\ jZkij_^_e_gby kijZ\_^eb\Z nhjfmeZ ( ) n d n cos 2 ϑ − 1 1 Pn = n , n = 0, n! = 1 . 2 n! ( dω )n < qZklghklb P0 = 1, P1 = cosϑ , P2 = 3cos 2 ϑ − 1 2 1 ( , P3 = 5cos3 ϑ − 3cosϑ ≡ 0 , 2 ) 1 { P4 = 35cos 4 ϑ − 30cos 2 ϑ + 3 , 8 } >ey nmgdpbb hjb_glZpbhggh]h jZkij_^_e_gby bf__f 2l + 1 f (ϑ ) = ∑ Pl Pl (cosϑ ) , 2 l ]^_ Pl = ∫ Pl (cosϑ ) f (ϑ )sinϑ dϑ — iZjZf_lj g_fZlbq_kdh]h hjb_g lZpbhggh]h ihjy^dZ Ke_^mxsb_ aZ 3 kdZeyjgu_ iZjZf_lju ihjy^dZ mqblu\Zxl fhe_dmeyjgu_ nemdlmZpbb \ kj_^_ ba l\_j^uo kl_j`g_c < g_dhlhjuo nbabq_kdbo wdki_jbf_glZo gZijbf_j ijb bamq_ gbb nemhj_kp_gpbb beb dhf[bgZpbhggh]h jZkk_ygby \ `b^dbo djbklZeeZo m^Z_lky hij_^_eblv g_ lhevdh P2 = Q gh b P4 . 10
Страницы
- « первая
- ‹ предыдущая
- …
- 9
- 10
- 11
- 12
- 13
- …
- следующая ›
- последняя »