Анизотропные жидкости. Биологические структуры. Петрова Г.П. - 26 стр.

UptoLike

Составители: 

Рубрика: 

25
()
'AATT
=−
C
TT
<
C
T
– clear-
ing point).
0
F
Q
=
23
22 2
0
39 9
F
AQ BQ CQ
Q
=−+=
. (9)
0Q =
0Q
:
2
22 2
0
39 9
ABQCQ−+ =
,
2
3
0
BA
QQ
CC
−+=
.
:
22
222
312 12
111
2222
4
BBABB ACB AC
Q
CCCC C
CBCB

=± = ±


.
2
2
0
F
Q
>
(min):
12
0
33
BCQ−+ >
,
21
33
CQ B>
,
2CQ B>
,
2
B
Q
C
>
.
2
12
11
2
BAC
Q
C
B

=+


, (10)
()
'
AATT
=−
.
=
C
TT
>
C
TT
=
0
F
Q
=
,
0
FF
=
    < l_hjbb iheZ]Z_lky qlh % b & hl 7 g_ aZ\bkyl Z dhwnnbpb
_gl A = A '(T − T ∗ )  ]^_ T ∗ < TC — l_fi_jZlmju i_j_oh^Z \ bahljhi
gmx nZam TC — l_fi_jZlmjZ ijhk\_le_gby beb ijhykg_gby – c le a r-
in g p o in t).
    Mklhcqb\ufb khklhygbyfb [m^ml lZdb_ dhlhjuf khhl\_lkl\m
_l ∂F = 0 fbgbfmf k\h[h^ghc wg_j]bb 
    ∂Q
                                ∂F 2         2       2
                                    = AQ − BQ 2 + CQ3 = 0 .             (9 )
                                ∂Q 3         9       9
    H^gh ba j_r_gbc                               
                              Q = 0 khhl\_lkl\m_l bahljhighc nZa_
    Ijh\_^_f ij_h[jZah\Zgby ihke_^g_]h mjZ\g_gby ^ey kemqZy
dh]^Z Q ≠ 0 :
                      2    2      2
                        A − BQ + CQ 2 = 0 ,
                      3    9      9
                              B    3A
                        Q2 − Q +      = 0.
                             C      C
J_r_gb_ wlh mjZ\g_gby ijb 4 ≠  :
          B     B2 3 A    B   B      12 AC 2    B          12 AC 
      Q=    ±      −   =    ±    1 −         =     1 ± 1 −       .
         2C    4C 2 C    2C 2C        B 2C     2C           B2 
                                           
       >ey lh]h qlh[u hij_^_eblv dZdhc agZd – iexk beb fbgmk –
hklZ\blv gZc^_f ijb dZdhf agZq_gbb 4 j_r_gb_ [m^_l mklhcqb
\uf J_r_gb_ mklhcqb\h _keb 2 > 0 (m in ):
                            ∂2F
                                       ∂Q
        1   2                 2     1                            B
       − B + CQ > 0 ,           CQ > B ,        2CQ > B , Q >      .
        3   3                 3     3                           2C
    Ihwlhfm iZjZf_lj ihjy^dZ g_fZlbq_kdhc nZau fh`_l [ulv aZ
ibkZg
                                      B         12 AC 
                                Q=      1 + 1 −       ,              (1 0 )
                                     2C          B2 
]^_               (
      A = A' T − T ∗ .    )
     GZc^_f 4 ijb 7&  Hij_^_ebf ijb dZdhc 7 = 7& [m^_l gZ[ex
^Zlvky i_j_oh^ ba g_fZlbq_kdhc nZau \ bahljhigmx `b^dhklv Wlh
TC > T ∗  < lhqd_ i_j_oh^Z ijb T = TC — k h^ghc klhjhgu
                                                           ∂F
                                                              = 0,
                                                           ∂Q
Z k ^jm]hc klhjhgu F = F0 k\h[h^gZy wg_j]by bahljhighc nZau 

                                                                         25