Анизотропные жидкости. Биологические структуры. Петрова Г.П. - 48 стр.

UptoLike

Составители: 

Рубрика: 

47
34,
):
0
nnn∆=
,
xx
nn=∆
,
yy
nn
=∆
()
2
222
0xy z
nnnnn
=∆ +∆ +
,
2222 2
00
2
xy zz
nnnnnnn=∆ +∆ + +∆
,
0
~nn
,
22
0
~
2
xy
z
nn
n
n
∆+
z
n
2222
rxyz
=++
()
2
1
z
nOr
=+
,
()
2
123x
naxayazOr
=+ ++
,
()
2
456
y
naxayazOr=+++
,
123
456
000
aaa
aaa
.
i
i
i
n
a
x

=


~0
z
n
0
FF F
=+
0
F
F
0
1
2
ii iji j
ij
FF ka kaa
=+ +
∑∑
. (26)
i
k
ij
k
ij
k
ij ji
kk
=
.
i
k
ij
k
).
      :[khexlgh_     baf_g_gb_ ^bj_dlhjZ \ g_dhlhjhc lhqd_ H jbk
      ]): ∆n = n − n0 , nx = ∆nx , n y = ∆n y  Ba jbk  ] \b^gh qlh
           & & &
34,

n 2 = ∆n x2 + ∆n 2y + (n0 − ∆nz ) , n 2 = ∆nx2 + ∆n 2y + n02 − 2n0 ∆nz + ∆nz2 , n ~ n0 ,
                                 2


                  ∆nx2 + ∆n y2
ihwlhfm ∆nz ~                    —   \_ebqbgZ \lhjh]h ihjy^dZ fZehklb
                      2n0
     <_ebqbghc ∆nz h[uqgh ij_g_[j_]Zxl b dhfihg_glu ^bj_dlh
jZ ^ey fZeuo ^_nhjfZpbc r 2 = x 2 + y 2 + z 2 fh`gh aZibkZlv lZd
                                           ( )
                             nz = 1 + O r 2 ,

                                                         ( )
                             nx = a1x + a2 y + a3 z + O r 2 ,

                             n y = a4 x + a5 y + a6 z + O ( r 2 ) ,
beb \ \b^_ fZljbpu
                                      a1    a2   a3
                                      a4    a5   a6 .
                                      0     0    0
                                                  ∂ni 
L_gahj ba]b[h\uo ^_nhjfZpbc                  ai = ∂ 
                                                    xi 
                                                           bf__l  dhfihg_gl gh
                                            
lZd dZd ∆nz ~ 0  lh bo hklZ_lky 
     H^ghjh^gh_ ih \k_fm h[jZapm khklhygb_ `b^dh]h djbklZeeZ
y\ey_lky l_jfh^bgZfbq_kdb jZ\gh\_kguf b ke_^h\Zl_evgh oZjZd
l_jbam_lky fbgbfmfhf k\h[h^ghc wg_j]bb >_nhjfbjh\Zggh_ kh
klhygb_ m`_ g_ jZ\gh\_kgh F = F0 + ∆F  a^_kv F0 — k\h[h^gZy
wg_j]by g_^_nhjfbjh\Zggh]h h[jZapZ ∆F — wg_j]by ba]b[h\uo
^_nhjfZpbc beb mijm]Zy wg_j]by ba]b[h\uo ^_nhjfZpbc
     ?keb ba]b[h\u_ ^_nhjfZpbb fZeu lh iehlghklv k\h[h^ghc
wg_j]bb fh`gh jZaeh`blv \ jy^ ih kl_i_gyf ^_nhjfZpbc
                                                    1
                             F = F0 + ∑ ki ai +       ∑k a a .                     (2 6 )
                                                    2 ij ij i j

    >Zggh_ mjZ\g_gb_ y\ey_lky ZgZeh]hf aZdhgZ =mdZ kh]eZkgh dh
lhjhfm fZeu_ ba]b[h\u_ ^_nhjfZpbb ijhihjpbhgZevgu ba]b[h
\uf gZijy`_gbyf Dhwnnbpb_glu ki b kij b]jZxl jhev mijm]bo ih
klhygguo ijb wlhf l_gahj kij — kbff_ljbqguc kij = k ji .