Сборник задач по высшей математике. Часть IV. Интегралы. Дифференциальные уравнения. Самохин А.В - 23 стр.

UptoLike

Рубрика: 

§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . 23
2) ðÕÓÔØ a < 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ
Z
Ax + B
a
q
x
2
b
a
x
c
a
dx =
1
a
Z
Ax + B dx
p
x
2
px q
=
=
1
a
Z
Ax + B
p
(x
2
+ px + q)
dx.
äÁÌØÛÅ, ×ÙÄÅÌÑÑ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ É ÐÒÉÍÅÎÑÑ ÚÁ-
ÍÅÎÕ t = x +
p
2
, ÔÁË ÖÅ ËÁË É × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ ×ÙÞÉÓÌÑÅÍ ÐÏÌÕÞÅÎÎÙÊ
ÉÎÔÅÇÒÁÌ.
ðÒÉÍÅÒ 27.
Z
5x 1
x
2
+ 2x + 2
dx =
Z
5x 1
p
(x + 1)
2
+ 1
dx =
Z
5(x + 1 1) 1
p
(x + 1)
2
+ 1
dx =
=
Z
5t 6
t
2
+ 1
dt = 5
Z
t dt
t
2
+ 1
6
Z
dt
t
2
+ 1
=
=
5
2
Z
d(t
2
+ 1)
t
2
+ 1
6 · ln |t +
p
t
2
+ 1| + C =
=
5
2
· 2(t
2
+ 1)
1/2
6 ln |t +
p
t
2
+ 1| + C = 5 · (x
2
+ 2x + 2)
1/2
6 ln |x + 1 +
p
x
2
+ 2x + 3| + C.
ðÒÉÍÅÒ 28.
Z
5x + 11
6x x
2
5
dx =
Z
5x + 11
p
(x
2
6x + 5)
dx =
=
Z
5x + 11
p
((x 3)
2
4)
dx =
Z
5(x 3 + 3) + 11
p
4 (x 3)
2
dx =
=
Z
5t + 26
4 t
2
dt = 5
Z
t
4 t
2
dt + 26
Z
dt
4 t
2
=
=
5
2
Z
dt
2
4 t
2
+ 26 arcsin
t
2
+ C =
5
2
Z
d(4 t
2
)
4 t
2
+
+ 26 arcsin
t
2
+ C = 5
p
4 t
2
+ 26 arcsin
t
2
+ C =
= 5
p
6x x
2
5 + 26 arcsin
x 3
2
+ C.
§1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .                                             23

  2) ðÕÓÔØ a < 0, ÔÏÇÄÁ ÉÎÔÅÇÒÁÌ (3) ÐÅÒÅÐÉÛÅÔÓÑ × ×ÉÄÅ

         Ax + B                    1          Ax + B dx
 Z                                      Z
     √  q                    dx = √         p             =
      −a −x2 − ab x −    c         −a        −x2 − px − q
                         a
                                                   1        Ax + B
                                                      Z
                                               =√       p                dx.
                                                   −a     −(x2 + px + q)

äÁÌØÛÅ, ×ÙÄÅÌÑÑ ÐÏÌÎÙÊ Ë×ÁÄÒÁÔ × Ë×ÁÄÒÁÔÎÏÍ ÔÒÅÈÞÌÅÎÅ É ÐÒÉÍÅÎÑÑ ÚÁ-
ÍÅÎÕ t = x + p2 , ÔÁË ÖÅ ËÁË É × ÐÒÅÄÙÄÕÝÅÍ ÓÌÕÞÁÅ ×ÙÞÉÓÌÑÅÍ ÐÏÌÕÞÅÎÎÙÊ
ÉÎÔÅÇÒÁÌ.
  ðÒÉÍÅÒ 27.

       5x − 1                  5x − 1                 5(x + 1 − 1) − 1
 Z                       Z                        Z
     √            dx =     p                dx =       p               dx =
      x2 + 2x + 2             (x + 1)2 + 1               (x + 1)2 + 1
                     5t − 6               t dt              dt
                 Z                  Z                 Z
              =     √        dt = 5 √            −6 √             =
                      t2 + 1             t2 + 1            t2 + 1
                   5 d(t2 + 1)
                     Z                          p
                 =        √       − 6 · ln |t + t2 + 1| + C =
                   2       t2 + 1
         5                         p
               2     1/2
       = · 2(t + 1) − 6 ln |t + t2 + 1| + C = 5 · (x2 + 2x + 2)1/2−
         2                                                    p
                                             − 6 ln |x + 1 + x2 + 2x + 3| + C.

  ðÒÉÍÅÒ 28.

       5x + 11                   5x + 11
 Z                       Z
     √             dx =     p                  dx =
      6x − x2 − 5              −(x2 − 6x + 5)
                       5x + 11                5(x − 3 + 3) + 11
              Z                            Z
           =      p                 dx =       p                 dx =
                    −((x − 3)2 − 4)               4 − (x − 3)2
                   5t + 26               t                   dt
                Z                 Z                    Z
            =      √        dt = 5 √          dt + 26 √             =
                     4 − t2            4 − t2              4 − t2
               5       dt2               t           5 d(4 − t2 )
                 Z                                     Z
            =       √        + 26 arcsin + C = −          √         +
               2      4 − t2             2           2       4 − t2
                          t           p                    t
             + 26 arcsin + C = −5 4 − t2 + 26 arcsin + C =
                          2                                2
                                          p                           x−3
                                    = −5 6x − x2 − 5 + 26 arcsin          + C.
                                                                       2