ВУЗ:
Составители:
Рубрика:
6
©hljZ`_gguoª -
HH’’
. Ba jbkmgdZ \b^gh qlh dZ`^uc ke_^mxsbcemqgZijbf_j
2
,
^he`_gijhclbimlvgZ
2x
[hevrbcih
kjZ\g_gbxk ij_^u^msbf \ gZr_f kemqZ_ emqhf
1
. Ijb wlhf hq_\b^gh qlh
x = d
sin
ΘΘ
]^_
ΘΘ
-m]heiZ^_gbybhljZ`_gbyemq_cGhg_\kydbcm]he
α
y\ey_lky[jw]]h\kdb f
m]ehf
ΘΘ
^eydhlhjh]h\hafh`ghh[jZah\Zgb_©hljZ`_ggh]hª j_ne_dkZLZddZd\k_emqb
f_`^m njhglhf iZ^_gby
HH’
b njhglhf hljZ`_gby ijhoh^yl jZagu_ imlb b m njhglZ
hljZ`_gby hgb ^he`gu bgl_jn_jbjh\Zlv lh h[jZah\Zlvky hljZ`_gguc j_ne_dk fh`_l
lhevdh\lhfkemqZ__kebj_amevlbjmxsZyZfieblm^Z\k_oemq_c[m^_lhlebqgZhlgmeyZ
ijZdlbq_kdb - ^hklZlhqgh agZqbl_evgZ qlh[u[ulvaZj_]bkljbjh\Zgghc Ijb hljZ`_gbb
ijbfblb\ghc j_r_ldhc h[gZjm`b\Z_lky qlh ^ey wlh]h
2x
^he`gh [ulv jZ\gh p_ehfm
qbkem^ebg\heg
,
beb
n
λλ
.
Lh]^Z
n
λλ
= 2 d
hkl
sin
ΘΘ
( 1.8 )
LZdbfh[jZahfihemqZ_lkymjZ\g_gb_<mevnZ-;jw]]Z
DZd\b^ghgZjbkd, ijbwlhf\k_emqbkh\iZ^ZxlihnZa_nZah\ucm]hejZ\_gb
kha^Zxlky hilbfZevgu_ mkeh\by ^ey©hljZ`_gbyª ?keb m\_ebqblv m]he iZ^_gby lZd
qlh[u
2x
klZeh
>
λλ
gZijbf_j
λλ
.
Ba jbk k hq_\b^gh qlh \hagbdZxl emqb \
ijhlb\hiheh`guonZaZobj_amevlbjmxsZyZfieblm^ZdZ`^uoq_luj_oemq_cjZ\gZgmex
Bf__lf_klhih]ZkZgb_j_ne_dkZ
Fgh`bl_ev
n
gZau\Zxl ihjy^dhf ki_dljZ LZd dZd
sin
ΘΘ
= n
λλ
/2d
hkl
lhijb
nbdkbjh\ZgguoagZq_gbyo
λλ
b
d
hkl
\a Z\bkbfhklbhlagZq_gbc
n
kbgmkm]eZ^bnjZdpbb
sin
ΘΘ
ijbgbfZ_l jZagu_ agZq_gby ijhihjpbhgZevgu_ wlbfqbkeZf ?keb ^ey
n
= 1
sin
ΘΘ
= 0,300 (
ΘΘ
= 17
27’
lh^ey
n
= 2
sin
ΘΘ
= 0,600 (
ΘΘ
= 36 52’
^ey
n
= 3
sin
ΘΘ
= 0,900 (
ΘΘ
= 76 10’
>ey
n
= 4
sin
ΘΘ
>>
j_ne_dk g_\hafh`_g >Z`_ _keb ijb
n
= 1
sin
ΘΘ
hq_gv fZe dZd \
ijb\_^_gghfijbf_j_ijZdlbq_kdb\hagbdZxlki_dljuebrvi_j\uo
lj_oihjy^dh\?keb`_
sin
ΘΘ
i_j\h]hj_ne_dkZ[hevr_l_
ΘΘ
>
76 10’ ),
lhhljZ`_gby^Z`_\lhjh]hihjy^dZhl^Zggh]h
d
hkl
g_\hafh`gu
sin
ΘΘ
>>
1 ).
Ijb bamq_gbb ki_pbZebabjh\Zgguo fhgh]jZnbc beb hjb]bgZevguo klZl_c \
i_jbh^bq_kdhc i_qZlb ihk\ys_gguo ijh[e_fZf bkke_^h\Zgby djbklZeebq_kdhc
kljmdlmjuf_lh^hfj_gl]_gh\kdh]hZgZebaZfh`_l
6 ©hljZ`_gguoª - HH’’. Ba jbkmgdZ \b^gh qlh dZ`^uc ke_^mxsbc emq gZijbf_j 2, ^he`_gijhclbimlvgZ2x[hevrbcih kjZ\g_gbx k ij_^u^msbf \ gZr_f kemqZ_ emqhf 1. Ijb wlhf hq_\b^gh qlh x = d sinΘ]^_Θ -m]heiZ^_gbybhljZ`_gbyemq_cGhg_\kydbcm]heα y\ey_lky[jw]]h\kdbf m]ehf Θ^eydhlhjh]h\hafh`ghh[jZah\Zgb_©hljZ`_ggh]hªj_ne_dkZLZddZd\k_emqb f_`^m njhglhf iZ^_gby HH’ b njhglhf hljZ`_gby ijhoh^yl jZagu_ imlb b m njhglZ hljZ`_gby hgb ^he`gu bgl_jn_jbjh\Zlv lh h[jZah\Zlvky hljZ`_gguc j_ne_dk fh`_l lhevdh\lhfkemqZ__kebj_amevlbjmxsZyZfieblm^Z\k_oemq_c[m^_lhlebqgZhlgmeyZ ijZdlbq_kdb - ^hklZlhqgh agZqbl_evgZ qlh[u [ulv aZj_]bkljbjh\Zgghc Ijb hljZ`_gbb ijbfblb\ghc j_r_ldhc h[gZjm`b\Z_lky qlh ^ey wlh]h 2x ^he`gh [ulv jZ\gh p_ehfm qbkem^ebg\heg, beb nλ. Lh]^Z n λ = 2 dhkl sinΘ ( 1.8 ) LZdbfh[jZahfihemqZ_lkymjZ\g_gb_λ gZijbf_j λ. Ba jbk k hq_\b^gh qlh \hagbdZxl emqb \ ijhlb\hiheh`guonZaZobj_amevlbjmxsZyZfieblm^ZdZ`^uoq_luj_oemq_cjZ\gZgmex Bf__lf_klhih]ZkZgb_j_ne_dkZ Fgh`bl_ev n gZau\Zxl ihjy^dhf ki_dljZ LZd dZd sinΘ = nλ/2dhkl lh ijb nbdkbjh\ZgguoagZq_gbyo λ b dhkl \aZ\bkbfhklbhlagZq_gbcn kbgmkm]eZ^bnjZdpbb sinΘ ijbgbfZ_l jZagu_ agZq_gby ijhihjpbhgZevgu_ wlbf qbkeZf ?keb ^ey n = 1 sinΘ = 0,300 ( Θ = 17h 27’ lh^eyn = 2 sinΘ = 0,600 ( Θ = 36h 52’ ^eyn = 3 sinΘ = 0,900 ( Θ = 76h 10’ >ey n = 4 sinΘ > j_ne_dk g_\hafh`_g >Z`_ _keb ijb n = 1 sinΘ hq_gv fZe dZd \ ijb\_^_gghfijbf_j_ijZdlbq_kdb\hagbdZxlki_dljuebrvi_j\uo lj_oihjy^dh\?keb`_sinΘ i_j\h]hj_ne_dkZ[hevr_ l_Θ > 76h 10’ ), lhhljZ`_gby^Z`_\lhjh]hihjy^dZhl^Zggh]hdhkl g_\hafh`gu sinΘ > 1 ). Ijb bamq_gbb ki_pbZebabjh\Zgguo fhgh]jZnbc beb hjb]bgZevguo klZl_c \ i_jbh^bq_kdhc i_qZlb ihk\ys_gguo ijh[e_fZf bkke_^h\Zgby djbklZeebq_kdhc kljmdlmjuf_lh^hfj_gl]_gh\kdh]hZgZebaZfh`_l
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »