Аналитическая геометрия. Шурыгин В.В. - 66 стр.

UptoLike

Составители: 

Φ
1
Φ
2
e
1
= e
2
= e
a b
a
2
= λa
1
c
2
= a
2
e = λa
1
e = λc
1
b
2
= λb
1
Φ
1
Φ
2
λ
e < 1
α, β (0,
π
2
)
a c
M
M
M(x; y)
Φ
r
1
= a + ex, r
2
= a ex.
D
1
D
2
x =
a
e
x =
a
e
M(x; y) D
1
D
2
dist(M, D
1
) =
a
e
+ x dist(M, D
2
) =
a
e
x
r
1
dist(M, D
1
)
=
r
2
dist(M, D
2
)
=
a ± ex
a
e
± x
= e.
D
F D
   ð͵xñÍXW´Z
   •= —[ 236b,*,09 ‚ò_ƒ /7*L2*8\ )8- ª” ˋŒ¡ Φ Œ Φ ¥ Œ’ŽÀ«ŒŽ ŠªŒº
‰Š”‘¦ ɝюžŒŒžŽž e = e = e ¥ ¡ŠªŠ¬‘= ‡*M/8b08*7?,-\ b ~8-;         1           2


/72)6* .636;*83 a 0 b 0[ 16,-,0)*/10N 236b,*,0M ~80N ~770./-b -16[K
                                  1       2


b6J8/9 .3-.-3 0-,67?,;0† */70 a = λa \ 8- c = a e = λa e = λc \ 6\
/7*L-b68*7?,-\ 0 b = λb = ¼/70 36/.-7-|08? 8*.*3? ~770./ Φ 0 Φ ,6
                                              2               1       2           2           1           1


.7-/1-/80 861\ )8-+ 16,-,0)*/10* /0/8*; 1--3L0,68 2 ,0N /-b.670\ 8-
                  2       1                                                                       1       2


-,0\ -)*b0L,-\ -16|28/9 :-;-8*80),;0 / 1-~OO0 0*,8-; :-;-8*800 λ =
   ]= ˆ)*b0L,-\ L79 16|L-:- )0/76 e < 1 ;-|,- .-L-+368? Lb6 8610N 2:76
              )                                    ò
α, β ∈ (0, ) \ 8- +2L*8 b.-7,98?/9 /--8,-I*,0* ‚ •ƒ\ .-~8-;2 b/910M ~7K
70./\ -.3*L*79*;M .3-0[b-7?,;0 [,6)*,09;0 .636;*83-b a 0 c \ ;-|,-
         π
         2


3*670[-b68? 161 .*3*/*)*,0* 1-,2/6 / .7-/1-/8?J=
   Æ= { )6/8,-/80\ -8/JL6 /7*L2*8\ )8- b/910M ~770./\ -870),M -8 -132|K
,-/80\ 0;**8 L03*1830/=
   H-/1-7?12 8-)16 M \ 2L-b7*8b-39J}69 /--8,-I*,09; ‚òãƒ\ .30,6L7*K
|08 ~770./2 ‚ò_ƒ\ 8- O-3;27 ‚òム.3*L/86b79J8 /-+-M b36|*,09 L79
O-167?,N 36L02/-b 8-)10 M = „610; -+36[-;\ ; .-72)070 /7*L2J}0*
b36|*,09 L79 O-167?,N 36L02/-b 8-)10 M (x; y) \ .30,6L7*|6}*M ~7K
70./2 Φ \ [6L6,,-;2 236b,*,0*; ‚ò_ƒ†
                         r = a + ex, r = a − ex.
                          1                           2
                                                                     ‚òaƒ
   „*.*3? ,*832L,- 2+*L08?/9\ )8- .39;* D 0 D \ 0;*J}0*\ /--8b*8K
/8b*,,-\ 236b,*,09 x = − 0 x = \ 9b79J8/9 L03*1830/6;0 ~770./6=   1           2

‡*M/8b08*7?,-\ 36//8-9,09 -8 8-)10 M (x; y) L- .39;N D 0 D 36b,
                                  a               a
                                  e               e


dist(M, D ) = + x 0 dist(M, D ) = − x \ -812L6 /7*L2*8
                                                                                          1           2
              a                               a
         1    e                       2       e

                      1r
                             =
                                     r
                                            =
                                              a ± ex
                                                  2
                                                     = e.         a
                                                                     ‚ò`ƒ
                  dist(M, D ) dist(M, D )       ±x
   ­b-M/8b- ~770./6\ b36|6*;-* /--8,-I*,09;0 ‚òڃ 070 ‚ò`ƒ\ 9b79*8/9
                              1                           2       e


/b-M/8b-;\ -.3*L*79J}0; ~770./= „-),**\ 0;**8 ;*/8- /7*L2J}** .3*L7-K
|*,0* =
   ˜Txw™ušxXWxZ ›œžŸ  Ž”‰‹ŒªŠ”Ц ¡‹Š‰ŠžŒ ¢ª‘ ¡£’£ D Œ
žŠ¤‰ F ¥ Ž ¡Œª‹Ž»«£ ¡£’Ц D ¥ Œ ¡œžŸ ¢ªŠ ¡Š‹Š»ŒžŽ‹ŸŠŽ
                                    ÁÁ