Теория массового обслуживания. Сивохин А.В - 218 стр.

UptoLike

218
> add(rhs(Lpi[7][i]), i=2..18);
1.000000000
> Lp1:=[seq(rhs(Lpi[t][2]), t=0..7)];
Lp1 := [1., 0.340401647897382365, 0.288927690208365172, 0.272458679941338600,
0.262924110297428237, 0.247130783680776068, 0.245939912633192926, 0.245925252968216268]
> Lp2:=[seq(rhs(Lpi[t][3]), t=0..7)];
Lp2 := [0., 0.364677900173566716, 0.344856033454938760, 0.330123243933219956,
0.320540131922112781, 0.304456603249013136, 0.303243162039364855, 0.303228224536199797]
> Lp3:=[seq(rhs(Lpi[t][4]), t=0..7)];
Lp3 := [0., 0.193221444902965223, 0.202560506285300812, 0.197740429982329214,
0.193938197756060971, 0.187438476122380154, 0.186947713718024322, 0.186941672382945928]
> Lp4:=[seq(rhs(Lpi[t][5]), t=0..7)];
Lp4 := [0., 0.0653159171913234166, 0.0759234728002084608, 0.0766777689375476024,
0.0767611166376077070, 0.0768287070080579810, 0.0768335722755819074, 0.0768336324737090848
]
> Lp5:=[seq(rhs(Lpi[t][6]), t=0..7)];
Lp5 := [0., 0.0132105931838467413, 0.0181620901029168579, 0.0202121937320502605,
0.0214554636189992730, 0.0235260635149955808, 0.0236822325232051364, 0.0236841533088042074
]
> Lp6:=[seq(rhs(Lpi[t][7]), t=0..7)];
Lp6 := [0., -0.00138277388120118528, 0.000553221513733471137, 0.00239588880515325146,
0.00362142992589572100, 0.00568308730621739680, 0.00583863794303997840,
0.00584055847701554516]
> Lp7:=[seq(rhs(Lpi[t][8]), t=0..7)];
Lp7 := [0., 0.00123882561463393450, 0.00414496691862422957, 0.00625592512568351988,
0.00762992763168156545, 0.00993612383644102565, 0.0101101442850368099,
0.0101122744680407165]
> Lp8:=[seq(rhs(Lpi[t][9]), t=0..7)];
Lp8 := [0., 0.00116232570181960186, 0.00425406834969008826, 0.00652960666868769840,
0.00801257114931022349, 0.0105019650926381770, 0.0106897362516730054,
0.0106920607136863372]
> Lp9:=[seq(rhs(Lpi[t][10]), t=0..7)];
Lp9 := [0., 0.00144698988446064956, 0.00482117688249002197, 0.00726280480204648250,
0.00885149465672318594, 0.0115179769516059044, 0.0117191984043930070,
0.0117216772751894944]
>   add(rhs(Lpi[7][i]), i=2..18);
                                                1.000000000

>   Lp1:=[seq(rhs(Lpi[t][2]), t=0..7)];
    Lp1 := [1., 0.340401647897382365, 0.288927690208365172, 0.272458679941338600,
           0.262924110297428237, 0.247130783680776068, 0.245939912633192926, 0.245925252968216268]

>   Lp2:=[seq(rhs(Lpi[t][3]), t=0..7)];
    Lp2 := [0., 0.364677900173566716, 0.344856033454938760, 0.330123243933219956,
           0.320540131922112781, 0.304456603249013136, 0.303243162039364855, 0.303228224536199797]

>   Lp3:=[seq(rhs(Lpi[t][4]), t=0..7)];
    Lp3 := [0., 0.193221444902965223, 0.202560506285300812, 0.197740429982329214,
           0.193938197756060971, 0.187438476122380154, 0.186947713718024322, 0.186941672382945928]

>   Lp4:=[seq(rhs(Lpi[t][5]), t=0..7)];
Lp4 := [0., 0.0653159171913234166, 0.0759234728002084608, 0.0766777689375476024,
       0.0767611166376077070, 0.0768287070080579810, 0.0768335722755819074, 0.0768336324737090848
       ]

>   Lp5:=[seq(rhs(Lpi[t][6]), t=0..7)];
Lp5 := [0., 0.0132105931838467413, 0.0181620901029168579, 0.0202121937320502605,
       0.0214554636189992730, 0.0235260635149955808, 0.0236822325232051364, 0.0236841533088042074
       ]

>   Lp6:=[seq(rhs(Lpi[t][7]), t=0..7)];
           Lp6 := [0., -0.00138277388120118528, 0.000553221513733471137, 0.00239588880515325146,
                0.00362142992589572100, 0.00568308730621739680, 0.00583863794303997840,
                0.00584055847701554516]

>   Lp7:=[seq(rhs(Lpi[t][8]), t=0..7)];
           Lp7 := [0., 0.00123882561463393450, 0.00414496691862422957, 0.00625592512568351988,
                 0.00762992763168156545, 0.00993612383644102565, 0.0101101442850368099,
                 0.0101122744680407165]

>   Lp8:=[seq(rhs(Lpi[t][9]), t=0..7)];
           Lp8 := [0., 0.00116232570181960186, 0.00425406834969008826, 0.00652960666868769840,
                 0.00801257114931022349, 0.0105019650926381770, 0.0106897362516730054,
                 0.0106920607136863372]

>   Lp9:=[seq(rhs(Lpi[t][10]), t=0..7)];
           Lp9 := [0., 0.00144698988446064956, 0.00482117688249002197, 0.00726280480204648250,
                 0.00885149465672318594, 0.0115179769516059044, 0.0117191984043930070,
                 0.0117216772751894944]


                                                    218