Теория массового обслуживания. Сивохин А.В - 59 стр.

UptoLike

59
> W1:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[1,i],i=1..m)], z, form=Lagrange ):
W2:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[2,i],i=1..m)], z, form=Lagrange ):
W3:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[3,i],i=1..m)], z, form=Lagrange ):
W4:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[4,i],i=1..m)], z, form=Lagrange ):
W5:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[5,i],i=1..m)], z, form=Lagrange ):
W6:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[6,i],i=1..m)], z, form=Lagrange ):
plot([W1, W2, W3, W4, W5, W6], z=1..m,
color=[aquamarine, black, blue, navy, coral,
cyan],
thickness=[2, 2, 2, 2, 2, 2], legend=[`1`, `2`,
`3`, `4`, `5`, `6`]);
> W1:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[1,i],i=1..m)], z, form=Lagrange ):
W2:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[2,i],i=1..m)], z, form=Lagrange ):
W3:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[3,i],i=1..m)], z, form=Lagrange ):
W4:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[4,i],i=1..m)], z, form=Lagrange ):
W5:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[5,i],i=1..m)], z, form=Lagrange ):
W6:=PolynomialInterpolation([seq(i, i=1..m)],
[seq(Kx[6,i],i=1..m)], z, form=Lagrange ):
plot([W1, W2, W3, W4, W5, W6], z=1..m,
color=[aquamarine, black, blue, navy, coral,
cyan],
thickness=[2, 2, 2, 2, 2, 2], legend=[`1`, `2`,
`3`, `4`, `5`, `6`]);




                       59