Лекции по основам кинематики элементарных процессов. Строковский Е.А. - 239 стр.

UptoLike

Составители: 

p
L
sin θ
L
= p sin θ
cosh u
CM
=coshu cosh u
L
sinh u sinh u
L
cos ω.
ω<(θ θ
L
) ω =
(θ θ
L
)
K p φ
r
y
(ω)
φ
A + B C + D C
θ
L
D θ
R
ω
cos ω
C
=cosθ cos θ
L
+ γ
CM
sin θ sin θ
L
=
=
p
B
p
C

E
C
E
B
cos θ
L
+
m
2
B
E
2
C
m
2
C
E
2
B
m
B
p
C
p
L
C
E
B
sin ω
C
=
m
C
E
C
{sin θ cos θ
L
γ
CM
cos θ sin θ
L
} =
=
m
C
β
CM
γ
CM
p
L
C
sinθ =
m
C
m
B

p
B
p
C
sin θ
L
cos ω
D
= cos θ cos θ
R
+ γ
CM
sin θ sin θ
R
=
=
p
B
p
D

E
D
E
B
cos θ
R
+
m
2
B
E
2
D
m
2
D
E
2
B
m
B
p
D
p
L
D
E
B
sin ω
D
=
m
D
β
CM
γ
CM
p
L
D
sinθ =
m
D
m
B

p
B
p
D
sin θ
R
.
θ C
m
B
= m
D
m
A
= m
C
ω
D
= θ
R
,
pp
m
A
= m
B
ω
C
= θ
L
.
θ
C
0 s →∞
2    1    9           pL sin θL = p sin θ0
                                                               
      cosh uCM = cosh u cosh uL − sinh u sinh uL cos ω .       F"---G
A  *                              0
   ω < (θ − θL )?         ω =
(θ − θL )
              6  0 2   
K 1   1  p  1    2 φ
 / F  G  / C   0    7   
2  1  1       1   ry (ω) 
      φ
          56  1    N   
 A + B → C + D 8 2     C 
   θL  2       D     θR  I2  2
ω C   0 1        56 1   ?
       cos ωC   = cos θ cos θL + γCM sin θ sin θL =
                             
                    pB       EC             m2 E 2 − m2 E 2
                =                  cos θL + B C L C B
                    pC       EB               mB pC pC EB
                  mC
       sin ωC   =      {sin θ cos θL − γCM cos θ sin θL } =
                  EC
                                               
                  mC βCM γCM                mC     pB
                =        L
                                 sinθ =                  sin θL
                        pC                  mB     pC
       cos ωD   = − cos θ cos θR + γCM sin θ sin θR =
                             
                                                                    F"--EG
                    pB       ED             m2 E 2 − m2 E 2
                =                  cos θR + B D L D B
                    pD       EB               mB pD pD EB
                                               
                  mD βCM γCM                mD     pB
       sin ωD   =        L
                                  sinθ =                 sin θR
                        pD                  mB     pD
            .
2  θ   2     C 
       122  0 2  mB        = mD      mA     = mC 0
2    1 ?
                             ω D = θR ,                F"--+G
     C  /   F1 0 ppG0 2 
mA = mB 0 6 16 ?
                           ω C = θL .                  F"--,G
      0 C   0   1       / 7 
2/ 2  θC → 00 2  s → ∞
                                  A*