Лекции по основам кинематики элементарных процессов. Строковский Е.А. - 63 стр.

UptoLike

Составители: 

β
cm
= β
p
min
=0
β
cm
p
min
Z
θ<θ
max
E
= γ
cm
β
cm
p cos θ + γ
cm
E, p
z
= p cos θ.
p
E
+ β
cm
γ
cm
p cos θ = γ
cm
p
2
+ m
2
1/2
.
p(θ)
p
±
p
±
= m ·
β
cm
γ
cos θ ±
β
2
γ
2
β
2
cm
γ
2
cm
sin
2
θ
1/2
γ
cm
(1 β
2
cm
cos
2
θ)
p
±
= p
·
cos θ
g
±
D
γ
cm
(1 β
2
cm
cos
2
θ)
,
D =1+γ
2
cm
1 g
2
tan
2
θ =
β
2
γ
2
β
2
cm
γ
2
cm
sin
2
θ
β
2
γ
2
cos
2
θ
,
g
=
β
cm
β
.
       βcm = β ∗ ? pmin = 00
                                  1  
             O
   A βcm > β ∗ ?     1  1  pmin
         1   1   1    F   
          ” 1  ”0 1 2  !◦ G
    $     A-0        / 6  
2     2  C  1    
1    Z       ?   G 7 
2   *!◦0    AG  9 *!◦0 1   52 2 
θ < θmax    C/   1   
    0 1 0 7 25     1   1 
 7 25 0   19   9  0   1  
 C 5  FAAAG?
            E ∗ = −γcm βcm p cos θ + γcm E , pz = p cos θ . FAA*G
8 1C         2 1 0   
  p0      2   0    5   
12 1   A-   0  FAA*G  ?
                                            
                 E ∗ + βcm γcm p cos θ = γcm p2 + m2
                                                                1/2
                                                                      .          FAB!G
>   9  C                                      p(θ)
   H 9  C 1   56   Fp±                                       
 9     FAB!GG?
                                                                     1/2
                    βcm γ ∗ cos θ ± β ∗ 2 γ ∗ 2 − βcm
                                                   2    2
                                                           sin2 θ
         p± = m ·                              2
                                 γcm (1 − βcm cos θ) 2
                                                       γcm
                                                                                FAB"G
 0    C  0
                                                   √ 
                                     cos θ g ∗ ±    D
                        p± = p∗ ·             2 cos2 θ)
                                    γcm (1 − βcm
                                                            ,                   FAB G
                                  β ∗ 2 γ ∗ 2 − βcm 2   2
                                                             sin2 θ
             2
    D = 1 + γcm 1 − g ∗ 2 tan2 θ =
                                                        γcm
                                           β ∗ 2 γ ∗ 2 cos2 θ
                                                                    ,           FABAG
2
                                    g∗ =
                                           βcm
                                            β∗
                                               .                                FABBG
                                         EA