Лекции по основам кинематики элементарных процессов. Строковский Е.А. - 96 стр.

UptoLike

Составители: 

0 P
0
=(E
0
, p
0
)
Z
p
0
1
P
1
=(E
1
, p
1
)
p
1
Z
(P
0
·P
1
)
(P
0
·P
1
)=E
0
E
1
p
0
p
1
= E
0
E
1
p
0
p
1
cos θ
1
= E
0
E
1
.
p
1
=
M
0
E
1
p
0
cos θ
1
± E
0
D
1
E
2
0
p
2
0
cos
2
θ
1
,
D
1
= M
2
0
p
1
2
m
2
1
p
2
0
sin
2
θ
1
.
sin θ
1
M
0
m
1
p
1
p
0
.
M
0
m
1
p
1
p
0
> 1 0
180
M
0
m
1
p
1
p
0
1
M
0
m
1
p
1
p
0
=1
M
0
m
1
p
1
p
0
< 1
θ
1 ,
=arcsin
M
0
m
1
p
1
p
0
=arcsin
γ
1
β
1
γ
0
β
0
      I 1    1 ” ”      
      1  1     2   

/ 2  
; 0 1  ”  ”   0  B1  P0 = (E0 , p0 )
F    1   Z     1 1 5 
1  p0 G .       1   1  1     B
1  P1 = (E1 , p1 ) . 2    1     
1  2  C  p1  1    Z  L  2  0
     (P0 · P1)   1 1 56  
       ?
     (P0 · P1 ) = E0 E1 − p0 p1 = E0 E1 − p0 p1 cos θ1 = E0∗ E1∗ . FEBG
    .  7 2  1  1 56      0
 7 2 1       1   0  
 9  FEBG C       0   56 1 
1     2    H 9 7      ?
                                                        √
                                 M0 E1∗ p0 cos θ1 ± E0 D1
                            p1 =
                                      E02 − p20 cos2 θ1
                                                          ,                                FE-G
2
                              D1 = M02 p∗1 2 − m21 p20 sin2 θ1 .                           FEEG
     H 9  FE-G 6   0  
                                                  M0 p∗1
                                       sin θ1 ≤
                                                  m1 p 0
                                                         .FE+G
.  1    7   0 ”1  ”          /
  " Mm pp > 1 I2  C 5   2    F 0◦
             ∗
         0   1


        180◦G0   2     2 
         1   0




    Mm pp ≤ 1  7    0   0   2   2
             ∗
         0   1
         1   0

           Mm pp = 10    C    9 *!◦0  
                                   ∗
                               0   1
                               1   0

     C Mm pp < 10      C F *%G
                     ∗
                 0   1


     2  ?    1   0


                                                                                    
                                                 M0 p∗1                      γ1∗ β1∗
                         θ1 ,  = arcsin
                                                 m1 p 0
                                                              = arcsin
                                                                             γ0 β0
                                                                                           FE,G

                                                 *E