Построение и решение оптимизационных моделей средствами программ MS Excel и XA. Светлов Н.М - 4 стр.

UptoLike

Рубрика: 

4
1. Поиск решения как средство решения задач линейного
и нелинейного моделирования
Процедура Поиск решения представляет собой мощный инструмент
для выполнения сложных вычислений. Она позволяет по находить значения
переменных, удовлетворяющих указанным критериям оптимальности, при ус-
ловии выполнения заданных ограничений.
Наилучшие результаты она позволяет получить для задач выпуклого
(в том числе линейного) программирования при условии отсутствия ограни-
чений типа «равно».
Поиск решения можно
использовать и для решения задач математиче-
ского программирования других типов, но в этом случае процедура поиска час-
то заканчивается неудачей, а при благоприятном исходе находит лишь один из
локальных оптимумов. Поэтому решение таких задач с помощью данной про-
цедуры следует предварять их аналитическим исследованием на предмет
свойств области допустимых решений, чтобы
выбрать подходящие начальные
значения и сделать правильное заключение о качестве и практической приме-
нимости полученного решения.
Результаты оптимизации оформляются в виде отчетов трёх типов:
Результаты. Отражаются исходное (до оптимизации) и оптимальное значе-
ния целевой функции, значения переменных до и после оптимизации, а так-
же формулы ограничений и дополнительные сведения об ограничениях.
Устойчивость. Содержит сведения о чувствительности решения к малым
изменениям в формуле целевой функции или в формулах ограничений. От-
чет не создается для моделей, значения переменных в которых ограничены
множеством целых чисел.
Пределы (Ограничения). Состоит из верхнего и нижнего значения целевой
функции и списка переменных, влияющих на нее, их нижних и верхних гра-
ниц. Отчет не создается для моделей, значения переменных в которых огра-
ничены множеством целых чисел. Нижней границей является наименьшее
значение, которое может принимать переменная (влияющая ячейка) при ус-
ловии, что
значения других переменных (влияющих ячеек) фиксированы и
удовлетворяют заданным ограничениям.
Для решения задачи оптимизации необходимо:
1. На рабочем листе Excel создать таблицу исходных данных, в которой
должны отображаться формулы. Для этого необходимо предвари-
тельно дать команду СервисПараметры, выбрать вкладку Вид и
установить флажок Формулы.
     1. Поиск решения как средство решения задач линейного
                 и нелинейного моделирования
        Процедура Поиск решения представляет собой мощный инструмент
для выполнения сложных вычислений. Она позволяет по находить значения
переменных, удовлетворяющих указанным критериям оптимальности, при ус-
ловии выполнения заданных ограничений.
        Наилучшие результаты она позволяет получить для задач выпуклого
(в том числе линейного) программирования при условии отсутствия ограни-
чений типа «равно».
        Поиск решения можно использовать и для решения задач математиче-
ского программирования других типов, но в этом случае процедура поиска час-
то заканчивается неудачей, а при благоприятном исходе находит лишь один из
локальных оптимумов. Поэтому решение таких задач с помощью данной про-
цедуры следует предварять их аналитическим исследованием на предмет
свойств области допустимых решений, чтобы выбрать подходящие начальные
значения и сделать правильное заключение о качестве и практической приме-
нимости полученного решения.
        Результаты оптимизации оформляются в виде отчетов трёх типов:
• Результаты. Отражаются исходное (до оптимизации) и оптимальное значе-
    ния целевой функции, значения переменных до и после оптимизации, а так-
    же формулы ограничений и дополнительные сведения об ограничениях.
• Устойчивость. Содержит сведения о чувствительности решения к малым
    изменениям в формуле целевой функции или в формулах ограничений. От-
    чет не создается для моделей, значения переменных в которых ограничены
    множеством целых чисел.
• Пределы (Ограничения). Состоит из верхнего и нижнего значения целевой
    функции и списка переменных, влияющих на нее, их нижних и верхних гра-
    ниц. Отчет не создается для моделей, значения переменных в которых огра-
    ничены множеством целых чисел. Нижней границей является наименьшее
    значение, которое может принимать переменная (влияющая ячейка) при ус-
    ловии, что значения других переменных (влияющих ячеек) фиксированы и
    удовлетворяют заданным ограничениям.
        Для решения задачи оптимизации необходимо:
        1. На рабочем листе Excel создать таблицу исходных данных, в которой
           должны отображаться формулы. Для этого необходимо предвари-
           тельно дать команду Сервис→Параметры, выбрать вкладку Вид и
           установить флажок Формулы.


                                     4