ВУЗ:
Составители:
Рубрика:
118
ÒÙÓðÏËðÓ‚‡ÎËÒ¸. ÇÏÂÌËÏ Í‡Ê‰ÓÏÛ ıÓÁflÈÒÚ‚Û˛˘ÂÏÛ ÒÛ·˙ÂÍÚÛ
k ·˛‰-
ÊÂÚÌÓ ӄð‡Ì˘ÂÌË ‚ ÙÓðÏÂ
∑
j∈J
k
∑
i∈I
a
ij
p
i
x
kj
-
∑
i∈I
p
i
y
ki
, (3.37)
„‰Â
y
ik
— ÍÓ΢ÂÒÚ‚Ó ·Î‡„‡ i, ÍÓÚÓð˚Ï ÒÛ·˙ÂÍÚ k ð‡ÒÔÓ·„‡ÂÚ ‚ ÒÓ-
ÒÚÓflÌËË ÓÔÚËÏÛχ ÔÓ è‡ðÂÚÓ (
∑
k∈K
y
ik
= y
i
‰Îfl ‚ÒÂı i ∈ I), ÓÒڇθÌ˚Â
Ó·ÓÁ̇˜ÂÌËfl ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú (2.33) ̇ ÒÚð. 69. ëӄ·ÒÌÓ (3.37), ·˛‰ÊÂÚ
ıÓÁflÈÒÚ‚Û˛˘Â„Ó ÒÛ·˙ÂÍÚ‡ ÙÓðÏËðÛÂÚÒfl ËÁ ÒÓ‚ÓÍÛÔÌÓÈ ÒÚÓËÏÓÒÚË ÔðË-
̇‰ÎÂʇ˘Ëı ÂÏÛ ðÂÒÛðÒÓ‚ (Ôð‡‚‡fl ÒÚÓðÓ̇ ÌÂð‡‚ÂÌÒÚ‚‡) Ë ð‡ÒıÓ‰ÛÂÚ-
Òfl ̇ ÔÓÍð˚ÚË ÔðÓËÁ‚Ó‰ÒÚ‚ÂÌÌ˚ı Á‡Úð‡Ú (΂‡fl ÒÚÓðÓ̇). èð‡‚Ë·
ÙÓðÏËðÓ‚‡ÌËfl Ë ð‡ÒıÓ‰Ó‚‡ÌËfl ·˛‰ÊÂÚ‡ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò (3.37), ð‡Ò-
ÒÏÓÚðÂÌÌ˚Â Ò ÚÓ˜ÍË ÁðÂÌËfl ˝ÍÓÌÓÏ˘ÂÒÍÓ„Ó ÒÓ‰ÂðʇÌËfl, ÓÚ΢‡˛ÚÒfl
ÓÚ ‚‡Î¸ð‡ÒÓ‚ÒÍËı Î˯¸ ÓÚÒÛÚÒÚ‚ËÂÏ ‚ÓÁÏÓÊÌÓÒÚÂÈ ÔÓÔÓÎÌÂÌËfl ·˛‰ÊÂ-
Ú‡ Á‡ Ò˜fiÚ ‰ÓÎË Û˜‡ÒÚËfl ‚ ÔðË·˚Îflı ÔðÓËÁ‚Ó‰ËÚÂÎÂÈ.
èÛÒÚ¸ ‰Îfl
H
2
ËÏÂÂÚ ÏÂÒÚÓ
a = (y
i
),
x =
⎝
⎜
⎜
⎛
⎠
⎟
⎟
⎞
∑
k∈K
∑
j∈J
k
a
ij
+ | a
ij
|
2
x
kj
,
y = –
⎝
⎜
⎜
⎛
⎠
⎟
⎟
⎞
∑
k∈K
∑
j∈J
k
a
ij
– | a
ij
|
2
x
kj
.
(3.38)
á‰ÂÒ¸
a — ÒÓ‚ÓÍÛÔ̇fl ̇˜‡Î¸Ì‡fl ÒÓ·ÒÚ‚ÂÌÌÓÒÚ¸ ıÓÁflÈÒÚ‚Û˛˘Ëı ÒÛ·˙-
ÂÍÚÓ‚,
x — ÒÓ‚ÓÍÛÔÌ˚È ÒÔðÓÒ, y — Ó·˙fiÏ ‚ÌÛÚðÂÌÌÂ„Ó ÔðÓËÁ‚Ó‰ÒÚ‚‡
1
.
éÒڇθÌ˚ ӷÓÁ̇˜ÂÌËfl Ú ÊÂ, ˜ÚÓ ‚ (3.37). í‡ÍËÏ Ó·ð‡ÁÓÏ, ÂÒÎË ‚ÂðÌÓ
(3.38), ÚÓ ·Î‡„‡ ÏÓ„ÛÚ ÔÓÒÚÛÔËÚ¸ ‚ ÏÓ‰ÂÎËðÛÂÏÛ˛ ÒËÒÚÂÏÛ ÚÓθÍÓ Á‡
Ò˜fiÚ ‚ÌÛÚðÂÌÌÂ„Ó ÔðÓËÁ‚Ó‰ÒÚ‚‡ ËÎË ËÁ Á‡Ô‡ÒÓ‚ ıÓÁflÈÒÚ‚Û˛˘Ëı ÒÛ·˙ÂÍ-
ÚÓ‚. ùÍÓÌÓÏ˘ÂÒÍËÈ ÒÏ˚ÒÎ ÒÓ‚ÓÍÛÔÌÓ„Ó ÒÔðÓÒ‡ Ë ÒÓ‚ÓÍÛÔÌÓ„Ó Ôð‰ÎÓ-
1
ÑÎfl β·Ó„Ó q Á̇˜ÂÌË ‚˚ð‡ÊÂÌËfl (q + |q|)/2 ð‡‚ÌÓ q, ÂÒÎË q
>
▀
> 0, ‡ ‚
ÔðÓÚË‚ÌÓÏ ÒÎÛ˜‡Â — ÌÛβ; Á̇˜ÂÌË ‚˚ð‡ÊÂÌËfl (q – |q|)/2 ð‡‚ÌÓ q, ÂÒÎË q
<
▀
< 0,
Ë̇˜Â — ÌÛβ.
éÔÚËÏÛÏ ÔÓ è‡ðÂÚÓ —
˝ÚÓ ÒÓÒÚÓflÌË ÍÓÌÍÛ-
ðÂÌÚÌÓ„Ó ð‡‚ÌÓ‚ÂÒËfl
ÒÙÓðÏËðÓ‚‡ÎËÒ¸. ÇÏÂÌËÏ Í‡Ê‰ÓÏÛ ıÓÁflÈÒÚ‚Û˛˘ÂÏÛ ÒÛ·˙ÂÍÚÛ k ·˛‰-
ÊÂÚÌÓ ӄð‡Ì˘ÂÌË ‚ ÙÓðÏÂ
∑ ∑aij pi xkj - ∑pi yki , (3.37)
j∈Jk i∈I i∈I
„‰Â yik — ÍÓ΢ÂÒÚ‚Ó ·Î‡„‡ i, ÍÓÚÓð˚Ï ÒÛ·˙ÂÍÚ k ð‡ÒÔÓ·„‡ÂÚ ‚ ÒÓ-
ÒÚÓflÌËË ÓÔÚËÏÛχ ÔÓ è‡ðÂÚÓ ( ∑yik = yi ‰Îfl ‚ÒÂı i ∈ I), ÓÒڇθÌ˚Â
k∈K
Ó·ÓÁ̇˜ÂÌËfl ÒÓÓÚ‚ÂÚÒÚ‚Û˛Ú (2.33) ̇ ÒÚð. 69. ëӄ·ÒÌÓ (3.37), ·˛‰ÊÂÚ
ıÓÁflÈÒÚ‚Û˛˘Â„Ó ÒÛ·˙ÂÍÚ‡ ÙÓðÏËðÛÂÚÒfl ËÁ ÒÓ‚ÓÍÛÔÌÓÈ ÒÚÓËÏÓÒÚË ÔðË-
̇‰ÎÂʇ˘Ëı ÂÏÛ ðÂÒÛðÒÓ‚ (Ôð‡‚‡fl ÒÚÓðÓ̇ ÌÂð‡‚ÂÌÒÚ‚‡) Ë ð‡ÒıÓ‰ÛÂÚ-
Òfl ̇ ÔÓÍð˚ÚË ÔðÓËÁ‚Ó‰ÒÚ‚ÂÌÌ˚ı Á‡Úð‡Ú (΂‡fl ÒÚÓðÓ̇). èð‡‚Ë·
ÙÓðÏËðÓ‚‡ÌËfl Ë ð‡ÒıÓ‰Ó‚‡ÌËfl ·˛‰ÊÂÚ‡ ‚ ÒÓÓÚ‚ÂÚÒÚ‚ËË Ò (3.37), ð‡Ò-
ÒÏÓÚðÂÌÌ˚Â Ò ÚÓ˜ÍË ÁðÂÌËfl ˝ÍÓÌÓÏ˘ÂÒÍÓ„Ó ÒÓ‰ÂðʇÌËfl, ÓÚ΢‡˛ÚÒfl
ÓÚ ‚‡Î¸ð‡ÒÓ‚ÒÍËı Î˯¸ ÓÚÒÛÚÒÚ‚ËÂÏ ‚ÓÁÏÓÊÌÓÒÚÂÈ ÔÓÔÓÎÌÂÌËfl ·˛‰ÊÂ-
Ú‡ Á‡ Ò˜fiÚ ‰ÓÎË Û˜‡ÒÚËfl ‚ ÔðË·˚Îflı ÔðÓËÁ‚Ó‰ËÚÂÎÂÈ.
éÔÚËÏÛÏ ÔÓ è‡ðÂÚÓ — èÛÒÚ¸ ‰Îfl H2 ËÏÂÂÚ ÏÂÒÚÓ
˝ÚÓ ÒÓÒÚÓflÌËÂ ÍÓÌÍÛ-
a = (yi),
ðÂÌÚÌÓ„Ó ð‡‚ÌÓ‚ÂÒËfl
∑∑
⎛ aij + | aij | ⎞
⎜
x=
2
xkj⎟,
⎜ ⎟
⎝ k∈K j∈Jk ⎠ (3.38)
∑∑
⎛ aij – | aij | ⎞
y=–⎜ xkj⎟.
2
⎜ ⎟
⎝ k∈K j∈Jk ⎠
á‰ÂÒ¸ a — ÒÓ‚ÓÍÛÔ̇fl ̇˜‡Î¸Ì‡fl ÒÓ·ÒÚ‚ÂÌÌÓÒÚ¸ ıÓÁflÈÒÚ‚Û˛˘Ëı ÒÛ·˙-
ÂÍÚÓ‚, x — ÒÓ‚ÓÍÛÔÌ˚È ÒÔðÓÒ, y — Ó·˙fiÏ ‚ÌÛÚðÂÌÌÂ„Ó ÔðÓËÁ‚Ó‰ÒÚ‚‡1.
éÒڇθÌ˚ ӷÓÁ̇˜ÂÌËfl Ú ÊÂ, ˜ÚÓ ‚ (3.37). í‡ÍËÏ Ó·ð‡ÁÓÏ, ÂÒÎË ‚ÂðÌÓ
(3.38), ÚÓ ·Î‡„‡ ÏÓ„ÛÚ ÔÓÒÚÛÔËÚ¸ ‚ ÏÓ‰ÂÎËðÛÂÏÛ˛ ÒËÒÚÂÏÛ ÚÓθÍÓ Á‡
Ò˜fiÚ ‚ÌÛÚðÂÌÌÂ„Ó ÔðÓËÁ‚Ó‰ÒÚ‚‡ ËÎË ËÁ Á‡Ô‡ÒÓ‚ ıÓÁflÈÒÚ‚Û˛˘Ëı ÒÛ·˙ÂÍ-
ÚÓ‚. ùÍÓÌÓÏ˘ÂÒÍËÈ ÒÏ˚ÒÎ ÒÓ‚ÓÍÛÔÌÓ„Ó ÒÔðÓÒ‡ Ë ÒÓ‚ÓÍÛÔÌÓ„Ó Ôð‰ÎÓ-
1
ÑÎfl β·Ó„Ó q Á̇˜ÂÌË ‚˚ð‡ÊÂÌËfl (q + |q|)/2 ð‡‚ÌÓ q, ÂÒÎË q ▀
> 0, ‡ ‚
ÔðÓÚË‚ÌÓÏ ÒÎÛ˜‡Â — ÌÛβ; Á̇˜ÂÌË ‚˚ð‡ÊÂÌËfl (q – |q|)/2 ð‡‚ÌÓ q, ÂÒÎË q ▀ < 0,
Ë̇˜Â — ÌÛβ.
118
Страницы
- « первая
- ‹ предыдущая
- …
- 116
- 117
- 118
- 119
- 120
- …
- следующая ›
- последняя »
