Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 17 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
21
{Ë}º¯©ÒãÒÓˮөËº¹Ë¯ÈÒÒ°ÓÒäÒ
|¹¯ËËãËÓÒË

vºmº}¹Óº°m°Ë²Óȹ¯ÈmãËÓÓ©²º¯ËÏ}ºmã«}ºº¯©²mmËËÓ©º¹Ò
°ÈÓÓ©Ëm¹º¹Ë¯ÈÒÒ
°¯ÈmÓËÓÒ«
°ãºÎËÓÒ«
äÓºÎËÓÒ«ÓÈmËË°mËÓÓºËÒ°ãº
ÓÈÏ©mÈË°«utvnxzkvuknrzvévk
zºÓ}¯ËÓ©® ªãËäËÓ ªºº äÓºÎË°mÈ Ëä ÓÈÏ©mÈ knrzvévuÒ
ººÏÓÈÈ°Òämºãºä°m˯²ÓË®°¯Ëã}º®Óȹ¯Òä˯
a

sãËmº®mË}º¯ººÏÓÈÈË°«°Òämºãºä
R

˺¯ËäÈ

|¹Ë¯ÈÒÒ°ãºÎËÓÒ«ÒäÓºÎËÓÒ«ÓÈmËË°mËÓÓºË Ò°ãºÓÈäÓºÎË
°mËmË}º¯ºmºãÈÈ°mº®°mÈäÒ
º
zºääÈÒmÓº°Ò

ab ba
→→ →→
+=+

º
k°°ºÒÈÒmÓº°Ò

abc ab c
→→
++ =+ +
()()


λµ λµ
()()
aa
→→
=

º
iÒ°¯ÒÒmÓº°Ò

λλλ
()
ab a b
→→
+= +



λµ λ µ
+=+
→→
DDD
ã«ã©²mË}º¯ºm
a

b
Ò
c
Òã©²mËË°mËÓÓ©²Ò°Ëã
λ
Ò
µ
iÈÓÓ©Ë °mº®°mÈ °ãË ÒÏ º¹¯ËËãËÓÒ« äÓºÎË°mÈ mË}º¯ºm Ò ÓÎÈ°« m
º}ÈÏÈËã°mË{}ÈË°mË¹¯Òä˯È¹¯ÒmËËä
iº}ÈÏÈËã°mº
°mº®°mÈ}ºääÈÒmÓº°Ò
c È Ï  Ë ã                                                      21
{Ë}ˆº¯©ÒãÒÓˮө˺¹Ë¯ÈÒÒ°ÓÒäÒ



                  
                  
                  
    |¹¯ËËãËÓÒË                   vºmº}‚¹Óº°ˆ m°Ë²Óȹ¯ÈmãËÓÓ©²ºˆ¯ËÏ}ºmã«}ºˆº¯©²mmËËÓ©º¹Ò
                            °ÈÓÓ©Ëm¹º¹Ë¯ÈÒÒ
                                   
                                                   °¯ÈmÓËÓÒ«
                                                   
                                                   °ãºÎËÓÒ«
                                                   
                                                   ‚äÓºÎËÓÒ«ÓÈm˝˰ˆmËÓÓºËÒ°ãº
                                                   
                                   ÓÈÏ©mÈˈ°«utv nxzkvuknrzvévk
                                   
                                   zºÓ}¯ËˆÓ©® ªãËäËӈ ªˆºº äÓºÎË°ˆmÈ ­‚Ëä ÓÈÏ©mȈ  knrzvévu Ò
                                                                                                                                                               →
                                   º­ºÏÓÈȈ °Òämºãºä°m˯²ÓË®°ˆ¯Ëã}º®Óȹ¯Òä˯ a 
                                   
                  
                  
                                                                                                                   →
            s‚ãËmº®mË}ˆº¯º­ºÏÓÈÈˈ°«°Òämºãºä R 
            
    ‘˺¯ËäÈ       |¹Ë¯ÈÒÒ°ãºÎËÓÒ«Ò‚äÓºÎËÓÒ«ÓÈm˝˰ˆmËÓÓºË Ò°ãºÓÈäÓºÎË
           °ˆmËmË}ˆº¯ºmº­ãÈÈ ˆ°mº®°ˆmÈäÒ
                          
                          
                          ºzºä䂈ȈÒmÓº°ˆÒ
                                                                                     →      →          →       →
                                                                a + b = b + a 
                                                      
                                                      
                                                      ºk°°ºÒȈÒmÓº°ˆÒ
                                                                                     →         →       →           →       →      →
                                                                                  a + ( b + c ) = ( a + b ) + c 
                                                                                               →                       →
                                                               λ ( µ a ) = ( λµ ) a 
                                                      
                                                      
                                                      ºiÒ°ˆ¯Ò­‚ˆÒmÓº°ˆÒ
                                                                                           →       →               →       →
                                                                                  λ ( a + b ) = λ a + λ b 
                                                                                                       →               →        →
                                                                                   λ + µ D = λ D+ µ D 
                                                      
                                                                                       →       →           →
                                   ã«ã ­©²mË}ˆº¯ºm a  b Ò c Òã ­©²m˝˰ˆmËÓÓ©²Ò°ËãλÒµ
       
       
       iÈÓÓ©Ë °mº®°ˆmÈ °ãË‚ ˆ ÒÏ º¹¯ËËãËÓÒ« äÓºÎË°ˆmÈ mË}ˆº¯ºm Ò ӂÎÈ ˆ°« m
º}ÈÏȈËã °ˆmË{}ÈË°ˆm˹¯Òä˯ȹ¯ÒmËËä
       
  iº}ÈÏȈËã°ˆmº°mº®°ˆmÈ}ºä䂈ȈÒmÓº°ˆÒ