Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 5 стр.

UptoLike

Составители: 

Рубрика: 

{mË ËÓÒË

vÈäÈmº¯Ò¹º°ã˺mÈËãÓº°ËÓºäÈ°¹Ò¯ÈÓºä¹¯Ë¹ºÈmÈËãËäÒ¹¯ºÁË°
°º¯ºäªº®}ÈÁ˯©ÓËäºÓËÒ°¹©ÈmãÒ«ÓÒ«°mºÒ²ÒËãË®v¯}¯ÈÒ²˺
ãË}Ò® m¹ºãÓË ¯ÈÒÒºÓÓ© ã« }ÈÁ˯© m©°Ë® äÈËäÈÒ}Ò lnj { ÒÏãºÎËÓÒÒ
äÈ˯ÒÈãÈÈmº¯°¹ËÓº°ºËÈËÓËÏãº¹º¯Ëã««È°¯È}Ò«äÒº°ÈºÓºm©°º
}Ò®¯ºmËÓ°¯ºº°Ò°¹¯º°ºº®Ò«°Óº°
¯ËãÈÈËä©® ÒÈËã«ä }¯° ãË}Ò® kpäÓºmÈ kÓÈãÒÒË°}È« ˺äË¯Ò« Ò
ãÒÓË®ÓÈ«ÈãË¯È¯Ë}ºäËÓºmÈÓ}ÈÁ˯º®m©°Ë®äÈËäÈÒ}Òlº°}ºm°}ººÁÒÏÒ}º
˲ÓÒË°}ºº ÒÓ°ÒÈ m Ë°mË ËÓºº ¹º°ºÒ« ã« °ËÓºm lnj wÈ }ÓÒÈ
È}ÎË äºÎË © Ò°¹ºãϺmÈÓÈm}ÈË°mË ËÓºº ¹º°ºÒ« Ò m ¯Ò² ËÓ©²
ÏÈmËËÓÒ«²°¯È°Ò¯ËÓÓº®¹ºººm}º®¹ºm©°Ë®äÈËäÈÒ}Ë
sÐ}ºmãËm
djknlyíqprj{nlévp
kx¡npujznujzqrqÎÐÒÊ
wév{nxxvé
   { m Ë  Ë Ó Ò Ë                                                   




vÈäÈmˆº¯­‚‚Ò¹º°ã˺mȈËã Óº°ˆ‚ËӈºäÈ°¹Ò¯Èӈºä¹¯Ë¹ºÈmȈËãËäÒ¹¯ºÁË°
°º¯ºäªˆº®}ÈÁ˯©ÓËäºÓËÒ°¹©ˆÈˆ mãÒ«ÓÒ«°mºÒ²‚҈ËãË®vˆ¯‚}ˆ‚¯ÈÒ‚²Ëº
ãË}Ò® m¹ºãÓË ˆ¯ÈÒÒºÓÓ© ã« }ÈÁ˯© m©° Ë® äȈËäȈÒ}Ò ln‘j { ÒÏãºÎËÓÒÒ
äȈ˯ÒÈãÈÈmˆº¯‚°¹Ë Óº°ºˈÈˈÓËÏ㺂¹ºˆ¯Ë­ã««È­°ˆ¯È}Ò«äÒº°ˆÈˆºÓºm©°º
}Ò®‚¯ºmËÓ °ˆ¯ºº°ˆÒ°¹¯º°ˆºˆº®Ò«°Óº°ˆ 
           
           ¯ËãÈÈËä©® ҈ȈËã«ä }‚¯° ãË}Ò® kpäÓºmÈ kÓÈã҈ÒË°}È« ˺äˈ¯Ò« Ò
ãÒÓË®ÓÈ«ÈãË­¯È¯Ë}ºäËÓºmÈÓ}ÈÁ˯º®m©° Ë®äȈËäȈÒ}Òlº°}ºm°}ººÁÒÏÒ}º
ˆË²ÓÒË°}ºº ÒÓ°ˆÒˆ‚ˆÈ m }ÈË°ˆmË ‚Ë­Óºº ¹º°º­Ò« ã« °ˆ‚Ëӈºm ln‘j wˆÈ }ÓÒÈ
ˆÈ}ÎË äºÎˈ ­©ˆ  Ò°¹ºã ϺmÈÓÈ m }ÈË°ˆmË ‚Ë­Óºº ¹º°º­Ò« Ò m ¯‚Ò² ‚Ë­Ó©²
ÏÈmËËÓÒ«²°¯È° Ò¯ËÓÓº®¹ººˆºm}º®¹ºm©° Ë®äȈËäȈÒ}Ë
           
           
           


                                                                                                                                                  
                                                                                                                                       €sÐ}ºmãËm
                                                                                                                                                  
                                                                                                                               djknlyíqprj{nlévp
                                                                                                                          k€x¡npujznujzqrqÎÐÒÊ
                                                                                                                                         wév{nxxvé