Основы многоскоростной обработки сигналов - 9 стр.

UptoLike

Составители: 

Рубрика: 

7
M4=
β
=128; допустимые значения отклонений АЧХ
2
1
10
=
доп
ε
;
3
2
10
=
доп
ε
.
Пример 4. Частота дискретизации входного комплексного сигнала
1кв
f = 10 кГц. Число каналов
M
=64. Каждый фильтр-демодулятор
ЦФДМ
i
относительно центральной частоты MMi
i
//2
0
π
π
ω
=
,
Mi ,1= , имеет следующие параметры частотной избирательности: по-
казатель прямоугольности АЧХ
α
=10; показатель узкополосности
4,1341,2)2/11(2
=
=
+= MMa
β
; допустимые значения отклонений
АЧХ
2
1
10
=
доп
ε
;
3
2
10
=
доп
ε
.
В примерах 1 и 2 строится система, работающая с действительным
входным сигналом,
M
выделяемых компонент которого занимают
полосу частот
π
ω
0 (
M
составляющих, расположенных в полосе
частот
π
ω
π
2<< (рис. 1.3, а, б), являются зеркально-симметричными
первой группе составляющих и, как следствие, информативно «избы-
точными»). Для примеров 1 и 3 предполагается, что между соседними
частотными каналами имеется «защитный» интервал, ширина которого
равна ширине полосы канала (рис. 1.3, а, в), а для примеров 2 и 4 «за-
щитный» интервал занимает незначительную часть полосы канала, что
позволяет вдвое увеличить число каналов в том же диапазоне рабочих
частот (рис. 1.3, б, г). В примерах 3 и 4 строится система, работающая с
комплексным входным сигналом,
M
выделяемых компонент которого
занимают всю полосу частот
π
ω
20
. Это обстоятельство дает воз-
можность увеличить вдвое общее число частотных каналов при прочих
равных условиях.
Различные методы построения структуры
M
-канальной системы
частотной селекции сигналов отличаются различной эффективностью с
позиции минимизации общих вычислительных и аппаратных затрат с
ростом числа каналов
M
. С целью иллюстрации зависимостей оценок
затрат на реализацию системы от числа каналов
M
каждый из пред-
ставленных выше примеров будет рассмотрен дополнительно для слу-
чая увеличения числа
M
в 32 раза.
Поскольку решается задача синтеза набора из
M
однотипных
фильтров, естественно предположить, что затраты на реализацию всей
системы будут расти с ростом числа каналов
M
. Вопрос только состо-
ит в том, с каким коэффициентом пропорциональности и в какой зави-
симости от числа каналов
M
будут расти эти затраты по отношению к
затратам на реализацию одного фильтра. Ответ на этот вопрос дают
оценки вычислительных затрат и емкости памяти данных, полученные