Физическая химия. Часть 3. Фазовые равновесия и учение о растворах. Зенин Г.С - 97 стр.

UptoLike

Рубрика: 

Фазовые равновесия и учение о растворах
97
пары (A и C, B и C) — неограниченно, показана в зависимости от
температуры на рис. 3.39.
В основании диаграммы (рис. 3.39
a) лежит треугольник соста-
вов. На оси ординат отложена температура. Бинодаль
a
4
a
3
a
2
a
1
kb
1
b
2
b
3
b
4
на боковой грани
призмы ограничивает область взаим-
ной растворимости жидкостей
A и B в
двухкомпонентной системе. Точки
a
1
и
b
1
, a
2
и b
2
, a
3
и b
3
, a
4
и b
4
характери-
зуют составы равновесных жидких
фаз при различных температурах.
В данной системе область вза-
имной растворимости с ростом темпе-
ратуры увеличивается, и точка
k отве-
чает верхней критической температу-
ре растворения (см. также рис. 3.20
b).
Рассекая политерму горизон-
тальными плоскостями (т. е. при
T=const) и соединяя кривыми точки,
соответствующие составам сопряжен-
ных растворов, для каждой плоскости
получим бинодальные кривые
a
1
kb
1
,
a
2
kb
2
, a
3
kb
3
и a
4
kb
4
(изотермы раство-
римости), которые делят треугольни-
ки составов при температурах
T
1
, T
2
,
T
3
и T
4
на гетерогенную (не заштрихо-
ванную) и гомогенную (заштрихован-
ную) области. Эти кривые позволяют
проследить при каждой температуре,
как влияет присутствие компонента
C
на взаимную растворимость компонен-
тов
A и B. В данной системе добавление компонента C увеличивает
взаимную растворимость
A и B.
Смещение границы между гомогенной и гетерогенной облас-
тями и расширение области взаимной растворимости при увеличе-
нии температуры и содержания компонента
C в системе отчетливо
видны на рис. 3.39
b, на котором представлена проекция всех изо-
терм на основание призмы.
На рис. 3.40 приведены сечения (при
T=const) более сложных
диаграмм для систем с ограниченной взаимной растворимостью
двух (
a, b) или трех (c) пар компонентов и для системы с замкнутой
областью расслоения (
d). Две области расслоения имеет, например,
Рис. 3.39. Зависимость
взаимной растворимости
компонентов A, B и C
друг в друге от темпера-
туры и состава
A
A
B
B
C
C
b
1
b
2
b
3
b
4
a
1
a
2
a
3
a
4
T
4
T
3
T
2
T
1
T
T
.
k
2
k
1
k
3
k
4
k
b
1
b
4
a
1
a
4
k
k
2
k
1
k
3
k
4
a
)
b
)