Физика твердого тела. Физическое материаловедение. Компьютерные методы физики. Зиненко В.И - 13 стр.

UptoLike

25
Hkgh\u h[t_dlghhjb_glbjh\Zggh]h ijh]jZffbjh\Zgby bgdZikmeypby
gZke_^h\Zgb_ ihebfhjnbaf dhgkljmdlhju ^_kljmdlhju \bjlmZevgu_
ijZ\beZ>bgZfbq_kdbjZkij_^_e_ggu_h[t_dlu
K\yagu_kibkdb[bgZjgu_^_j_\vyZe]hjblfukhjlbjh\dbbihbkdZ
:e]hjblfuqbke_ggh]hZgZebaZ
Ko_fZ =hjg_jZ Ko_fu ^_e_gby fgh]hqe_gZ gZ d\Z^jZlguc lj_oqe_g
F_lh^ObqdhdZ
J_r_gb_ mjZ\g_gbc F_lh^u ^bohlhfbb dZkZl_evguo ohj^ ijhkluo
bl_jZpbcA_c^_ey
Bgl_jiheypby bgl_jiheypbhggu_ fgh]hqe_gu EZ]jZg`Z GvxlhgZ
Kj_^g__ kj_^g_d\Z^jZlbqgh_ hldehg_gb_ F_lh^ gZbf_gvrbo d\Z^jZlh\
Ebg_cgZyj_]j_kkby
Kibkhdj_dhf_g^m_fuoaZ^Zq
k_f_klj
AZ^ZqZGZclbkmffmi_j\uoqe_gh\jy^ZZijyfufkmffbjh\Zgb_f
[h[jZlgufkmffbjh\Zgb_f\ihko_f_=hjg_jZ:
1.
1 + 2x + 3x
2
+ 4x
3
+... 2.
1 + 3x + 5x
2
+ 7x
3
+...
3.
1 + x
2
/2! + x
4
/4! + x
6
/6!... 4.
1 + x + x
2
/2! + x
3
/3! +...
GZclbkmffmjy^ZkaZ^Zgghclhqghklvx
1.
1/x+1/4x
2
+1/9x
3
+1/16x
4
+... 2.
x-x
3
/3!+x
5
/5!-x
7
/7!+...
3.
1-x
2
/2!+x
4
/4!-x
6
/6!+... 4.
1+x/1!+x
2
/2!+x
3
/3!+...
AZ^ZqZ>ZgZd\Z^jZlgZyfZljbpZ:n,n).
Z gZclb kmffm we_f_glh\ ijbgZ^e_`Zsbo ^bZ]hgZeyf [ ihemqblv
ljZgkihgbjh\Zggmx fZljbpm \ aZf_gblv g_q_lgu_ kljhdb \_dlhjhf <Q ]
klhe[pu kh^_j`Zsb_ fZdkbfZevguc b fbgbfZevguc we_f_glu ihf_gylv
f_klZfb ^ mfgh`blv gZ ljZgkihgbjh\Zggmx fZljbpm \ \uykgblv y\ey_lky
eb^ZggZyfZljbpZkbff_ljbqghc
AZ^ZqZ AZihegblv d\Z^jZlgmx fZljbpm ihjy^dZ1qbkeZfb hl^h1
2
ih
kibjZebb\u\_klb\l_dklh\ucnZce
AZ^ZqZ GZibkZlvijh]jZffmi_j_\h^Z qbkeZba ^_kylbqghckbkl_fu
kqbke_gby\jbfkdmxbr_klgZ^pZl_jbqgmx
AZ^ZqZ IhkqblZlv dhebq_kl\hkqZkleb\uo Z\lh[mkguo [be_lh\ k
r_klbagZqgufghf_jhf
AZ^ZqZ KhklZ\blv ijh]jZffm \uqbke_gby agZq_gbc nmgdpbb gZ bgl_j\Ze_
[a,b@bihkljh_gby__]jZnbdZgZwdjZgagZq_gby\u\_klb\l_dklh\ucnZce
1.
Y(x)=Ln(1+tg(x)). 2.
Y(x)=sin(x)/(1-sin(x)).
3.
Y(x)=Log[(1+x)/(1-x)]. 4.
Y(x)=cos(x sin(x)).
AZ^ZqZ&ihfhsvx ]_g_jZlhjZkemqZcguo qbk_eknhjfbjh\Zlv ^\ZfZkkb\Z
;b<
ZgZclbghf_jlhqdb[eb`Zcr_cdgZqZemdhhj^bgZl[kdhevdhlhq_dihiZeh
26
\gmljv djm]Z jZ^bmkZ\ kdhevdh lhq_d hdZaZehkv \g_ d\Z^jZlZo<0.5,
0<y]jZa[blvbgl_j\Ze>@gZbgl_j\Zeh\ihkljhblv]bklh]jZffmb
k_dlhjgmx ^bZ]jZffm \ mihjy^hqblv fZkkb\ O \ ihjy^d_ \hajZklZgby < \
ihjy^d_m[u\Zgby
AZ^ZqZ L_eh k fZkkhc F [jhr_gh ih^ m]ehf/d ]hjbahglm k gZqZevghc
kdhjhklvx9
Z ihkljhblv ]jZnbd ljZ_dlhjbb ^\b`_gby[ gZclbm]he ijbdhlhjhf ^ebgZ
ihe_lZ jZ\gZ6ijb aZ^Zgghf9\ ihkljhblv ]jZnbd aZ\bkbfhklb fh^mey
kdhjhklbhl\j_f_gbihe_lZ
AZ^ZqZ GZ ]eZ^dhc ]hjbahglZevghc iehkdhklb e_`Zlh^bgZdh\uo rZc[u
$%& RZc[_ : khh[sbeb kdhjhklv9ihke_ q_]h hgZ bkiulZeZ Z[khexlgh
mijm]h_ khm^Zj_gb_ h^gh\j_f_ggh k rZc[Zfb%b&JZkklhygb_ f_`^m
p_gljZfb ihke_^gbo ^h khm^Zj_gby [ueh \6jZa [hevr_ ^bZf_ljZ dZ`^hc
rZc[u
Z ihkljhblv ljZ_dlhjbb ^\b`_gby rZc[ [ jZkkfhlj_lv \k_ \hafh`gu_
\ZjbZglu^\b`_gbyrZc[\aZ\bkbfhklbhlagZq_gby6
AZ^ZqZGZclbkaZ^Zgghclhqghklvxj_r_gbymjZ\g_gby
Zf_lh^hf^_e_gbyhlj_adZihiheZf[f_lh^hfijhkluobl_jZpbc\f_lh^hf
ohj^]f_lh^hfdZkZl_evguo
1.
2
X
+ 5X - 3 =0 2.
X
3
- 0.2X
2
+ 0.5X + 1.5 =0
3.
tg(X)=exp(-X) 4.
1/(1+X
2
) = X
Hnhjfblvijh]jZffmkkbkl_fhcf_gx^ey\u[hjZf_lh^Z
AZ^ZqZGZclbi_j\u_dhjg_cmjZ\g_gbyx=ctg(x) FaZ^Zgghclhqghklvx
AZ^ZqZ < l_dklh\hf nZce_ ^Zgu1qbk_e G_h[oh^bfh kqblZlv qbkeZ
hlkhjlbjh\Zlvih\hajZklZgbxb\u\_klb\^jm]hcnZce
AZ^ZqZ KhklZ\blv ijh]jZffm \ dhlhjhc lj_[m_lky \\_klb fZkkb\ aZibk_c
kibkhd ]jmiiu k iheyfb NBH ihe f_klh `bl_evkl\Z mki_\Z_fhklv ih
ij_^f_lZf<uykgblvkdhevdhklm^_glh\`b\_l\h[s_`blbbkdhevdh\]hjh^_
dhebq_kl\h fm`qbg b `_gsbg \ ]jmii_ \uqbkeblv kj_^gxx mki_\Z_fhklv
klm^_glh\ ihemqblv kibkhd g_mki_\Zxsbo klm^_glh\ mihjy^hqblv ^Zgguc
kibkhd\ZenZ\blghfihjy^d_Bkihevah\ZlvaZibkblbiZrecord.
k_f_klj
AZ^ZqZ<uqbkeblvkaZ^Zgghclhqghklvxhij_^_e_ggucbgl_]jZehlnmgdpbb
F(xgZbgl_j\Ze_>A,B@bkihevamyf_lh^uZijyfhm]hevgbdh\[ljZi_pbc\
KbfkhgZ]lj_o\hkvfuo
1.
F(x)=sin(x)/x 2.
F(x)=exp(-x)
3.
F(x)=sin(x
2
)4.
F(x)=x*ln(x)
AZ^ZqZ KhklZ\blv ijh]jZffm j_r_gby ^bnn_j_gpbZevgh]h mjZ\g_gby gZ
bgl_j\Ze_>@k \u\h^hf lZ[ebpu \ nZce b ]jZnbdhf nmgdpbb f_lh^Zfb Z
Wce_jZ[Wce_jZki_j_kq_lhf\Jmg]_DmllZ
1.
Y'=-X*Y, Y(0)=1 2.
Y' = -X/Y, Y(0) = 1
3.
Y''+16*Y=20, Y(0), Y'(0)=0 4.
Y''+Y'/X+Y=20, Y(0)=1, Y'(0)=0