Частные вопросы курса физики. Александров В.Н - 36 стр.

UptoLike

Рубрика: 

35
отсчета направлена вертикально вверх. Тогда уравнение (1) можно записать в
проекциях на ось Y:
mg + T
1
= ma
1
,
откуда T
1
= m(g+a); T
1
>mg. (2)
В случае 2 лифт движется вверх, т.е. его вектор скорости
υ
направлен вверх
(по оси Y), а его ускорение a
2
направлено в противоположную сторону, т.е.
движение лифта замедленное:
mg + T
2
= ma
2
и T
2
= m(g a
2
); T
2
<mg. (3)
Аналогично рассуждая, получим для случая 3:
mg + T
3
= ma
3
; T
3
= m(g a
3
); T
3
<mg. (4)
Полученное выражение (4) совпадает с выражением (3) для случая 2. Тело
испытывает в обоих случаях частичную или полную невесомость. Сила Т, с
которой на тело действует растянутая пружина, становится меньше величины mg.
По третьему закону Ньютона сила, с которой она растягивает пружину (подвес),
равная по модулю
T
, есть, по определению, вес тела
P
:
PT
. Если лифт
движется с ускорением a=g, т.е. под действием только одной силы тяжести
gm
м. выражение (1)), то
0T
, и соответственно вес тела
P
в этом случае равен
нулю. В таких случаях говорят, что тело находится в состоянии невесомости.
В случае 4 имеем (рис. 4.19):
mg + T
4
= ma
4
; T
4
= m(g+a
4
); T
4
>mg. (5)
Сравнивая (5) и (2) видим, что в случаях 1 и 4 тело испытывает перегрузку.
Если лифт движется с постоянной скоростью (а = 0), то из (1) следует:
Т = mg ,
т.е. динамометр показывает вес тела. Таким образом, величина силы T не зависит от
направления скорости
, а определяется только направлением и величиной ускорения.
Для получения численного ответа, подставив в (2) (5) величины а
1
, а
2
, а
3
и а
4
из условия задачи, получим:
Т
1
=14,7 Н; Т
2
=4,9 Н; Т
3
=7,35 Н; Т
4
=12,25 Н; Т
5
=9,8 Н.
Задача 1.8. Определите силу давления автомашины на дорогу: 1) на
горизонтальном участке дороги; 2) на середине вогнутого участка
дороги; 3) на середине выпуклого участка дороги. Масса машины m
= 5000 кг, скорость υ = 20 м/с, радиус кривизны криволинейных
участков дороги R = 100 м. Трением пренебречь.
Анализ и решение
Сделаем чертеж (рис.1.20). Систему отсчета свяжем с землей, направив ось Y
вертикально вверх. Укажем силы, действующие на машину по вертикали: силу тяжести
gm
и силу реакции опоры
N
. Запишем уравнение движения - II закон Ньютона:
отсчета направлена вертикально вверх. Тогда уравнение (1) можно записать в
проекциях на ось Y:
                                  – mg + T1 = ma1,
откуда                       T1 = m(g+a);         T1>mg.                     (2)
                                                                 
      В случае 2 лифт движется вверх, т.е. его вектор скорости υ направлен вверх
(по оси Y), а его ускорение a2 направлено в противоположную сторону, т.е.
движение лифта замедленное:
               – mg + T2 = – ma2 и     T2 = m(g – a2); T2mg.                  (5)
      Сравнивая (5) и (2) видим, что в случаях 1 и 4 тело испытывает перегрузку.
      Если лифт движется с постоянной скоростью (а = 0), то из (1) следует:
                                     Т = mg ,
т.е. динамометр показывает вес тела. Таким образом, величина силы T не зависит от
                     
направления скорости  , а определяется только направлением и величиной ускорения.
       Для получения численного ответа, подставив в (2) – (5) величины а1, а2, а3
и а4 из условия задачи, получим:
                Т1 =14,7 Н; Т2 =4,9 Н; Т3 =7,35 Н; Т4 =12,25 Н; Т5 =9,8 Н.

Задача 1.8. Определите силу давления автомашины на дорогу: 1) на
            горизонтальном участке дороги; 2) на середине вогнутого участка
            дороги; 3) на середине выпуклого участка дороги. Масса машины m
            = 5000 кг, скорость υ = 20 м/с, радиус кривизны криволинейных
            участков дороги R = 100 м. Трением пренебречь.
                               Анализ и решение
      Сделаем чертеж (рис.1.20). Систему отсчета свяжем с землей, направив ось Y
вертикально вверх. Укажем силы, действующие на машину по вертикали: силу тяжести
  
m g и силу реакции опоры N . Запишем уравнение движения - II закон Ньютона:


                                                                             35