ВУЗ:
Составители:
Рубрика:
91
Задачи
11.1. На какой диапазон частот можно настроить колебательный контур, если его
индуктивность L=3 мГн, а емкость может меняться от 60 до 480 пФ? Сопро-
тивлением контура можно пренебречь. (Ответ: f
1
=700Гц; f
2
=1,95·10
3
Гц).
11.2. Закон изменения тока со временем в колебательном контуре имеет вид
i=–0,02sin400
t А. Индуктивность контура L=1 Гн. Найти: 1) период
колебаний; 2) емкость С контура; 3) максимальную энергию магнитного
поля W
м
и максимальную энергию электрического поля W
эл
.
(Ответ: 1) 5мс; 2) 0,63 мкФ; 3)0,2 мДж).
11.3. Определите минимальное значение активного сопротивления при разряд-
ке лейденской банки, при котором разряд будет апериодическим. Ем-
кость лейденской банки С=1,2нФ, а индуктивность проводов L=3 мкГн.
Запишите закон убывания заряда на обкладках банки при ее разрядке.
Дано: С=1,2нФ=1,2·10
-9
Ф; L=3 мкГн=3·10
-6
Гн.
Найти: R.
Решение
Лейденская банка представляет собой колебательный контур с па-
раметрами L, R и С, частота свободных затухающих колебаний в кото-
ром может быть вычислена по формуле (11.5) с учетом выражения для
коэффициента затухания контура
L2
R
и формулы (11.2):
2
22
0
L2
R
LC
1
. (1)
Так как
2
Т
, то при увеличении коэффициента затухания пери-
од затухающих колебаний растет, и при
=
0
(
=0) обращается в бес-
конечность, то есть вместо периодических колебаний заряда на обклад-
ках банки произойдет ее разрядка (апериодический процесс). Минималь-
ное сопротивление, при котором разряд будет апериодическим, опреде-
лим, приравняв к нулю формулу (1):
LC
1
L4
R
2
2
.
Таким образом,
Ом 100
102,1
103
2
C
L
2R
9
6
.
Уравнение зависимости изменения заряда на обкладках банки анало-
гично уравнению (11.4а) при свободных затухающих колебаниях:
)tcos()texp(qq
m
. (2)
Учитывая условия возникновения апериодического процесса (
=
0
и
=0), получим окончательно:
)texp(qq
0m
.
Ответ: R=100 Ом.
Задачи 11.1. На какой диапазон частот можно настроить колебательный контур, если его индуктивность L=3 мГн, а емкость может меняться от 60 до 480 пФ? Сопро- тивлением контура можно пренебречь. (Ответ: f1=700Гц; f2=1,95·103 Гц). 11.2. Закон изменения тока со временем в колебательном контуре имеет вид i=–0,02sin400 t А. Индуктивность контура L=1 Гн. Найти: 1) период колебаний; 2) емкость С контура; 3) максимальную энергию магнитного поля Wм и максимальную энергию электрического поля Wэл. (Ответ: 1) 5мс; 2) 0,63 мкФ; 3)0,2 мДж). 11.3. Определите минимальное значение активного сопротивления при разряд- ке лейденской банки, при котором разряд будет апериодическим. Ем- кость лейденской банки С=1,2нФ, а индуктивность проводов L=3 мкГн. Запишите закон убывания заряда на обкладках банки при ее разрядке. Дано: С=1,2нФ=1,2·10-9Ф; L=3 мкГн=3·10-6Гн. Найти: R. Решение Лейденская банка представляет собой колебательный контур с па- раметрами L, R и С, частота свободных затухающих колебаний в кото- ром может быть вычислена по формуле (11.5) с учетом выражения для коэффициента затухания контура R и формулы (11.2): 2L 2 1 R 2 0 2 . (1) LC 2 L Так как Т 2 , то при увеличении коэффициента затухания пери- од затухающих колебаний растет, и при =0 (=0) обращается в бес- конечность, то есть вместо периодических колебаний заряда на обклад- ках банки произойдет ее разрядка (апериодический процесс). Минималь- ное сопротивление, при котором разряд будет апериодическим, опреде- R2 1 лим, приравняв к нулю формулу (1): 2 . 4L LC L 3 10 6 Таким образом, R2 2 100 Ом . C 1,2 10 9 Уравнение зависимости изменения заряда на обкладках банки анало- гично уравнению (11.4а) при свободных затухающих колебаниях: q qm exp( t ) cos( t ) . (2) Учитывая условия возникновения апериодического процесса (=0 и =0), получим окончательно: q qm exp( 0t ) . Ответ: R=100 Ом. 91
Страницы
- « первая
- ‹ предыдущая
- …
- 90
- 91
- 92
- 93
- 94
- …
- следующая ›
- последняя »