ВУЗ:
Составители:
Рубрика:
S = {x} K x
K
+
1
(x, 0) = {(y, t) ∈ R × (0, ∞) : at > |y − x|}
n = 1
K
+
2
(x, 0) = {(y, t) ∈ R
2
× (0, ∞) : at > |y − x|}
n = 2
Γ
+
3
(x, 0) = ∂K
+
3
(x, 0) = {(y, t) ∈ R
3
× (0, ∞) : at = |y −x|}
n = 3
x
t
K
t
x
K
(x, t) ∈ R
n+1
+
u
Ω
u(x, t) Ω n = 1
(x, t) I
at
(x)
Σ
at
(x) Ω n = 3
(x, t) ∈ R
4
+
S
at
(x)
Ω
S
ñîáîé îäíó òî÷êó: S = {x}, òî ìíîæåñòâîì âëèÿíèÿ K òî÷êè x ÿâëÿåòñÿ òðåóãîëüíèê áóäóùåãî K1+(x, 0) = {(y, t) ∈ R × (0, ∞) : at > |y − x|} ïðè n = 1, òðåõìåðíûé (ïðîñòðàíñòâåííî-âðåìåííîé) êîíóñ áóäóùåãî K2+(x, 0) = {(y, t) ∈ R2 × (0, ∞) : at > |y − x|} ïðè n = 2 è ãðàíèöà êîíóñà áóäóùåãî, ò.å. õàðàêòåðèñòè÷åñêèé êîíóñ áóäó- ùåãî Γ+ + 3 3 (x, 0) = ∂K3 (x, 0) = {(y, t) ∈ R × (0, ∞) : at = |y − x|} ïðè n = 3. t t 111111111111111111111111 000000000000000000000000 000000000000000000000000 111111111111111111111111 1111111111111111 0000000000000000 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 K 0000000000000000 1111111111111111 0000000000000000 1111111111111111 K 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 x 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 x 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 000000000000000000000000 111111111111111111111111 0000000000000000 1111111111111111 0000000000000000 1111111111111111 èñ.5.1 èñ.5.2 Ìíîæåñòâî òî÷åê (x, t) ∈ Rn+1 + , íà êîòîðîì ðåøåíèå u îäíîçíà÷íî îïðå- äåëÿåòñÿ ïî äàííûì Êîøè â îáëàñòè Ω, íàçûâàåòñÿ îáëàñòüþ îïðåäåëåíèÿ u(x, t) ñ íà÷àëüíûìè äàííûìè â Ω (ñì. ðèñ.5.2).  ñëó÷àå n = 1 (ëèáî 2) îá- ëàñòü îïðåäåëåíèÿ ñîñòîèò èç âñåõ òî÷åê (x, t), äëÿ êîòîðûõ îòðåçîê Iat (x) ëèáî êðóã Σat (x) â (5.16) ðàñïîëîæåíû â Ω. Ïðè n = 3 îáëàñòü îïðåäåëå- íèÿ ñîñòîèò èç âñåõ òî÷åê (x, t) ∈ R4+ , äëÿ êîòîðûõ ñåðà Sat (x) â (5.17) ðàñïîëîæåíà â Ω. Ïðèâåäåííûå ðåçóëüòàòû ðàñïðîñòðàíÿþòñÿ íà áîëåå îáùóþ ñèòóàöèþ, êîãäà íîñèòåëåì äàííûõ Êîøè ÿâëÿåòñÿ ïîâåðõíîñòü S ïðîñòðàíñòâåííîãî òèïà, à òàêæå íà ñëó÷àé îáùèõ äèåðåíöèàëüíûõ óðàâíåíèé ãèïåðáîëè- ÷åñêîãî òèïà. Áîëåå ïîäðîáíî îá ýòîì ìîæíî ïðî÷èòàòü â [11, 13, 14℄, [23℄. 221