ВУЗ:
Составители:
Рубрика:
=
1, − 1 < x < 0 1 < x < ∞;
0, x = 0, x = 1, x = −1;
−1, − ∞ < x < −1, 0 < x < 1.
x = −1, x = 0, x = +1
g(f(x)) = sgn (1 − sgn
2
x) ≡ 0,
g(f(x)) (−∞, ∞).
f(x) =
x[x].
n < x < n + 1 n = 0, ±1, ±2, ...
f(x) = nx.
x = n x = n − h, 0 < h < 1.
f(n) = n[n] = n
2
, f(n−0) = lim
n→+0
f(n−h) = lim
n→+0
(n−h)[n−h] =
= n(n−1), x = n
”ε − δ
ε
”
a) x
3
, b)
√
x, c) sin x, d) cos x.
a) f(x) = x sin
1
x
, x 6= 0 f(0) = 0.
b) f(x) =
1
.
(1 + e
1/(x−1)
)
, x 6= 1 f(1) −
1, åñëè − 1 < x < 0 èëè 1 < x < ∞; = 0, åñëè x = 0, x = 1, x = −1; −1, åñëè − ∞ < x < −1, èëè 0 < x < 1. Îòñþäà ñëåäóåò, ÷òî òî÷êè x = −1, x = 0, x = +1 ÿâëÿþòñÿ òî÷êàìè ðàçðûâà ïåðâîãî ðîäà. Èç òîãî, ÷òî g(f (x)) = sgn (1 − sgn2 x) ≡ 0, ñëåäóåò íåïðå- ðûâíîñòü ôóíêöèè g(f (x)) íà (−∞, ∞). Ïðèìåð 53. Èññëåäîâàòü íà íåïðåðûâíîñòü ôóíêöèþ f (x) = x[x]. Ðåøåíèå. Åñëè n < x < n + 1 ãäå n = 0, ±1, ±2, ... òî f (x) = nx. Ñëåäîâàòåëüíî, ïðè ýòèõ çíà÷åíèÿõ àðãóìåíòà ôóíêöèÿ íåïðåðûâíà. Äëÿ èññëåäîâàíèÿ íà íåïðåðûâíîñòü â òî÷êàõ x = n ïîëîæèì x = n − h, ãäå 0 < h < 1. Ïîñêîëüêó f (n) = n[n] = n2 , f (n−0) = lim f (n−h) = lim (n−h)[n−h] = n→+0 n→+0 = n(n−1), òî òî÷êè x = n ÿâëÿþòñÿ òî÷êàìè ðàçðûâà ïåðâîãî ðîäà. Ã. Çàäà÷è è óïðàæíåíèÿ äëÿ ñàìîñòîÿòåëüíîé ðàáî- òû. 1. Ñ ïîìîùüþ ”ε − δε ” ðàññóæäåíèé äîêàçàòü íåïðåðûâ- √ íîñòü ñëåäóþùèõ ôóíêöèé: a) x3 , b) x, c) sin x, d) cos x. 2. Èññëåäîâàòü íà íåïðåðûâíîñòü ñëåäóþùèå ôóíêöèè: a) f (x) = x sin x1 , åñëè x 6= 0 è f (0) = 0. [ Íåïðåðûâíà.] . b) f (x) = 1 (1 + e1/(x−1) ), åñëè x 6= 1 è f (1) − ïðîèçâîëü- íà. 66