Осцилятор Дуффинга. Астахов В.В - 26 стр.

UptoLike

Рубрика: 

˙x(t) ¨x(t)
˙x =
1
2
[˙a exp(
0
t) + ˙a
exp(
0
t) +
0
a exp(
0
t)
0
a
exp(
0
t)]
=
1
2
[
0
a exp(
0
t)
0
a
exp(
0
t)]
¨x =
1
2
[
0
˙a exp(
0
t)
0
˙a
exp(
0
t) ω
2
0
a exp(
0
t) ω
2
0
a
exp(
0
t)]
=
0
˙a exp(
0
t)
ω
2
0
2
[a exp(
0
t) + a
exp(
0
t)].
x(t), ˙x(t) ¨x(t)
0
˙a exp(
0
t) +
γ
8
[a exp(
0
t) + a
exp(
0
t)]
3
= 0,
0
˙a +
γ
8
[a
3
exp(2
0
t) + 3|a|
2
a + 3|a|
2
a
exp(2
0
t) + (a
)
3
exp(4
0
t)] = 0.
a(t)
<
0
˙a > =
1
T
Z
T
0
0
˙adt
=
0
˙a,
< a
3
exp(2
0
t) > =
1
T
Z
T
0
a
3
exp(2
0
t)dt
=
a
3
2
0
T
[exp(2
0
T ) exp(2
0
0)]
=
a
3
2
0
T
[exp(i4π) 1]
=
a
3
2
0
T
[cos 4π + i sin 4π 1]
= 0.
< ... >